PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Chitosan In Vitro to Minimize the Adverse Effects of Salinity in Petunia × atkinsiana D. don

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The genus Petunia is a plant of high economic importance in the world-wide horticulture. These ornamental plants are often exposed to soil salinity that negatively affects their development. Chitosan is a biopolymer with multiple applications in plant breeding but it also minimizes the adverse effects of abiotic stresses on plant growth. The objective of this study was to investigate the effects of chitosan on petunia shoots development under salt stress in vitro. In the first experiment, four types of chitosan with molecular weight of 3.33, 8, 10 and 970 kDa in the concentrations of 0, 10, 15 and 20 ppm were supplemented into MS medium. In the second experiment, petunia shoots were grown on MS medium with the addition of different molecular weight of chitosan in the concentration of 15 ppm each and 100 mM NaCl. The results indicated that all of chitosan types and concentrations stimulate the plant growth in comparison to control. However, 15 ppm chitosan concentration was more effective than other concentrations used. Salinity caused a significant reduction in shoot and root length, fresh and dry mass, plant water contents, while chitosan (970 kDa) adjusted the salt toxicity. It is concluded that chitosan would be able to stimulate the growth of petunia shoots in vitro independent of their molecular weight. It was observed that the addition of chitosan of 970 kDa to MS medium under salinity conditions may alleviate the inhibitory effect of salt stress on the plant growth.
Słowa kluczowe
Rocznik
Strony
143--149
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
  • Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17 Str., 71-434 Szczecin, Poland
autor
  • Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17 Str., 71-434 Szczecin, Poland
Bibliografia
  • 1. Abdelhamid M.T., Sadak M.S.H., Schmidhalter U., El-Saady A.K.M. 2013. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biolo. Colomb., 18, 499-510.
  • 2. Al-Tawaha A.R.M., Al-Ghzawi A.L.A. 2013. Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.). Res. on Crops, 14(2), 489-491.
  • 3. Angelova Z., Georgiev S., Ross W. 2006. Elicitation of plants. Biotechnol., 20, 72-83.
  • 4. Ait Barka E., Eullaffroy P., Clément C., Vernet G. 2004. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant. Cell Rep., 22, 608-614.
  • 5. Bartkowiak A. 2001. Binary polyelectrolyte microcapsules based on natural polysaccharides. Edt. PS Szczecin.
  • 6. Bassuony F.M., Hassanein R.A., Baraka D.M., Khalil R.R. 2008. Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. II-Changes in nitrogen constituent, protein profiles, protease enzyme and certain inorganic cations. Aust. J Appl. Sci., 2, 350-359.
  • 7. Berenschot A.S., Zucchi M.I., Tulmann-Neto A., Quecini V. 2008. Mutagenesis in Petunia×hybrida Vilm. and isolation of a novel morphological mutant. Brazilian Journal of Plant Physiology 20, 16-27.
  • 8. Dias A.M.A., Cortez A.R., Barsan M.M., Santos J.B., Brett C.M.A., De Sousa H.C. 2013. Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustainable Chem. Eng., 1(11), 1480-1492.
  • 9. El Hadrami A., Adam L.R., El Hadrami I., Daayf F. 2010. Chitosan in plant protection. Mar. Drugs, 8, 968-987.
  • 10. Gaswanto R., Syukur M., Purwoko B.S., Hidayat S.H. 2016. Induced mutation by gamma rays irradiation to increase chilli resistance to begomovirus. Agrivita, J Agri. Sci., 38(1), 24-32.
  • 11. Jabeen N., Ahmad R. 2013. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treted with chitosan. J Sci. Food Agric., 93, 1699-1705.
  • 12. Jones R.A. 1986. High salt tolerance potential in Lycopersicon species during germination. Euphytica, 35, 575-582.
  • 13. Khalid H., Kumari M., Grover A., Nasim M. 2015. Salinity stress tolerance of Camelina investigated in vitro. Plant Sci., 46, 137-144.
  • 14. Krupa-Małkiewicz M., Smolik B., Ostojski D., Sędzik M. 2015. Effect of ascorbic acid on morphological and biochemical parameters in tomato seedling exposure to salt stress. Environ. Protect. and Nat. Res., 24, 25-27.
  • 15. Krupa-Małkiewicz M., Ostojski D., Sędzik M., Pelc J., Smolik B. 2016. Interactive effects of salinity stress with or without nicotinamide on physiological and biochemical parameters of tomato seedling. Foila Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech., 326(38)2, 71-80.
  • 16. Krupa-Małkiewicz M., Kosatka A., Smolik B., Sędzik B. 2017. Induced mutations through EMS treatment and in vitro screening for salt tolerance plant of Petunia×atkinsiana D.Don. Not. Bot. Horti. Agrobo., 45(1) DOI:10.15835/nbha45110578.
  • 17. Lizárraga-Paulin E.G., Torres-Pacheco I., Moreno-Martinez E., Miranda-Castro S.P. 2011. Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level. Afr. J Biotechnol., 10(34), 6439-6446.
  • 18. Mahdavi B., Rahimi A. 2013. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eursia J Biosci., 7, 69-76.
  • 19. Manchanda G., Garg N. 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant., 30, 595-618.
  • 20. Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167, 645-663.
  • 21. Murashige T. Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plantarum, 15, 473-497.
  • 22. Obsuwan K., Sawangsri K., Ukong S., Uthairatanakij A. 2010a. Effects of chitosan concentration on in vitro growth of Dendrobium hybrid seedlings. Acta Hort. DOI: 10.17660/ActaHortic.2010.878.36.
  • 23. Obsuwan K., Yoodee S., Uthairatanakij A. 2010b. Application of chitosan on in vitro growth of Rhynchostylis giganteaprotocorms and seedlings. Acta Hort. DOI:10.17660/ActaHortic.2010.878.35.
  • 24. Piwowarczyk B., Tokarz K., Kamińska I. 2016. Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell Tiss. Organ. Cult., 124, 227-240.
  • 25. Pongprayonn W., Roytrakul S., Pichayangkura R., Chadchawan S. 2013. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul., 70, 159-173.
  • 26. Queirós F., Fidalgo F., Santos I., Salema R. 2007. In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol. Plant., 51, 728-734.
  • 27. Rai M.K., Kalia R.K., Singh R., Gangola M.P., Dhawan A.K. 2010. Developing stress tolerant plants through in vitro selection – An overview of the recent progress. Environ. Exp. Bot., 71(1), 89-98.
  • 28. Sadak M.Sh., Rady M.M., Badr N.M., Gaballah M.S. 2010. Increasing sunflower salt tolerance using nicotinamide and tocopherol. Int. J Academic Res., 2, 263-270.
  • 29. Sopalun K., Thammasiri K., Ishikawa K. 2010. Effects of chitosan as the growth stimulator for Grammatophyllum speciosum in vitro culture. Int. J Innov. Res. Sci. Eng. Technol., 4(11), 828-830.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0bd1541-97c9-4832-8959-f47512f00143
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.