PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern Reverse Engineering Methods Used to Modification of Jewelry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research aimed at redesigning a jewelry product with the use of modern reverse engineering methods. A detailed review of the literature was conducted and the essence of the application of this technology in the era of Industry 4.0 was presented. The 3D digitization of the research object was performed with the use of Aicon SmartSCAN-HE R8 and DAVID-SLS3 scanners. The obtained better quality file was edited in Autodesk Meshmixer 3.5 software. On the basis of the created model, a 3D print was made using FDM (Fused Deposition Modeling) and DPP (Daylight Polymer Printing) technology with two different materials – HIPS (High Impact Polystyrene) and photopolymer casting resin. The final stage of the work was the measurement of the surface roughness of the B101 (CuSn10P) tin-phosphorus alloy castings made using the method of investment casting.
Słowa kluczowe
Twórcy
  • Division of Foundry and Plastic Working, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Division of Foundry and Plastic Working, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
autor
  • Division of Foundry and Plastic Working, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Division of Production Engineering, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Division of Production Engineering, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Division of Foundry and Plastic Working, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • 1. Alic J., Computer-assisted everything? Tools and techniques for design and production, Technological Forecasting and Social Change, 44(4), 1993, 359-374, https://doi.org/10.1016/0040- 1625(93)90041-5.
  • 2. BaronioG., Volonghi P., Signoroni A., Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis, Applied Bionics and Biomechanics, 2017, Article ID 8171520, 8 pages. https://doi. org/10.1155/2017/8171520.
  • 3. Bianco G., Gallo A., Bruno F., Muzzupappa M., A Comparative Analysis between Active and Passive Techniques for Underwater 3(13), 2013, 11007– 11031, doi:10.3390/s130811007.
  • 4. Clarke T.A., Ellis T.J., Robson S., High accuracy 3-D measurement using multiple camera views, IEE Colloquium Digest No. 1994/054.
  • 5. Cichalewski P., AutoCAD 3D – Model bryłowy i powierzchniowy, 2018, https://techtutor.pl/autocad-3d-2-model-brylowy-i-powierzchniowy/ (in Polish).
  • 6. Daanen H.A.M, TerHaar F.B., 3D whole body scanners revisited, Displays, 34(4), 2013, 270–275, https://doi.org/10.1016/j.displa.2013.08.011.
  • 7. DREAM 3D, Photocentric Liquid Crystal HR, https://www.dream3d.co.uk/product/photocentricliquid-crystal-hr/.
  • 8. FORMLABS, Castable Wax: Jewelry Pattern Burnout Process, Retrieved 17.08.2020, https://media.formlabs.com/m/6b4018a61335afb9/original/- ENUS-P-Castable-Wax-Jewelry-Pattern-BurnoutProcess.pdf.
  • 9. Gorecky D., Schmitt, M., Loskyll M., Zuhlke D.: Human – machine – interaction in the Industry 4.0 ERA, Industrial Informatics (INDIN), 12th IEEE International Conference, 289–294 (2014).
  • 10. Górski F., Wichniarek, R., Kuczko, W., Bun, P., Erkoyuncu, J.A.: Augmented Reality in Training of Fused Deposition Modelling Process, Advances in Manufacturing, Springer, 565-574 (2018).
  • 11. Hajkowski J., Ignaszak Z., Experimental and simulation tests on the impact of the conditions of casting solidification from AlSi9Cu3 alloy on their structure and mechanical properties, Archives of Foundry Engineering, 2018, 8(1), 167-175.
  • 12. HEXAGON, SmartScan – The 3D optical scanner that’s made to measure, Retrieved 17.08.2020, https://www.hexagonmi.com/en-US/products/ white-light-scanner-systems/aicon-smartscan.
  • 13. Ignaszak Z., Popielarski P., Hajkowski J., Codina E., Methodology of comparative validation of selected foundry simulation codes, Archives of Foundry Engineering, 2015, 15(4), 37-44, DOI: 10.1515/AFE-2015-0076.
  • 14. Ignaszak Z., Popielarski P., Sensitivity Tests of Simulation Models Used in Chosen Calculation Codes on Uncertainty of Thermo-Mechanical Parameters during Virtual Mechanical Stress Estimation for Ferrous Alloy Castings, Defect and Diffusion Forum, 2011, Vol. 312-315, 758-763, DOI: 10.4028/ WWW.SCIENTIFIC.NET/DDF.312-315.758.
  • 15. Ignaszak Z., Sika R., Perzyk M., Kochański A., Kozłowski J., Effectiveness of SCADA systems in control of green sands properties, Archives of Foundry Engineering, 2016, 16(1), 5-12, DOI: 10.1515/afe-2015-0094.
  • 16. Ignaszak Z., Sika R., Rogalewicz M., Contribution to the Assessment of the Data Acquisition Effectiveness in the Aspect of Gas Porosity Defects Prediction in Ductile Cast Iron Castings, Archives of Foundry Engineering, 2018, 18(1), 35-40, DOI: 10.24425/118808.
  • 17. Ignaszak Z., Wojciechowski J., Analysis and Validation of Database in Computer Aided Design of Jewelery Casting, 2020, 2020(1), 9-16.
  • 18.Jasiulewicz-Kaczmarek M., Legutko S., Kluk P., Maintenance 4.0 technologies – new opportunities for sustainability driven maintenance, Management and Production Engineering Review, 2020, 11(2), 74-87, DOI: 10.24425/mper.2020.13373.
  • 19. Khan D., Shirazi M., Kim M.Y., Single shot laser speckle based 3D acquisition system for medical applications, Optical and Lasers in Engineering, 2018, 105, 43-53, https://doi.org/10.1016/j.optlaseng.2018.01.001.
  • 20. Kopecky M., Krejcovsky L., Svarc M., Antropometric Measuring Tools and Methodology for the Measurement of Anthropometric Parameters, Palacky University, Olomouc 2014.
  • 21. Górski F., et al., 2019, Automated Design of Customized 3D-Printed Wrist Orthoses on the Basis of 3D Scanning. In: Computational and Experimental Simulations in Engineering : Proceedings of ICCES 2019, red. Hiroshi Okada, Satya N. Atluri: Springer International Publishing, 2020, 1133-1143.
  • 22. Kujawinska, A., Vogt, K., Diering, M., Rogalewicz, M., Waigaonkar, S.D., Organization of visual inspection and its impact on the effectiveness of inspection, Lecture Notes in Mechanical Engineering, 2015, 19, 899-909, DOI: 10.1007/978-3-319- 68619-6_87.
  • 23.Piperi E., Galantucci L. M., Kaçani J., Bodi I. and Spahiu T., From 3D scanning to 3D printing: Application in fashion industry, 7th International Conference of Textile, 10-11 November, 2016, Tirana, Albania.
  • 24. Raja V., Kiran J. F., Reverse Engineering, SpringerVerlag London, 2008.
  • 25. Ramaraj T.C.,Eleftheriou E. C.,Ramaraj R., Integration of design and manufacture of complex geometries through solid and surface modeling techniques, Journal of Mechanical Working Technology, Vol. 20, September 1989, 141-152, DOI: 10.1016/0378-3804(89)90025-9.
  • 26. Sepahvani P., Influences of additive manufacturing (3D printers) on the production cost and future of jewelry industry, Polytechnic University of Milan, Master of Science in Management Engineering, Department of Management, Economics and Industrial Engineering, 2016.
  • 27. Sika R., Szajewski D., Hajkowski J., Popielarski P., Application of instance-based learning for cast iron casting defects prediction, Management and Production Engineering Review, 2019, 10(4), 101-107, DOI: 10.24425/mper.2019.131450.
  • 28. Spahiu T., Kacani J., Shehi E., Piperi E., 3D Body Scanning Technique for Anthropometric Measurements and Custom Clothing Designing, International Conference Developing Third Activities in Univesities, Albania 2014, DOI: 10.13140/2.1.1927.2484
  • 29. Szelewski M., Wieczorowski M., Reverse Engineering and Methods of Discretization of Physical Objects, Stowarzyszenie Inżynierów I Techników Mechaników Polskich, 2015, 88(12), 183-188, DOI 10.17814/mechanik.2015.12.584.
  • 30. Żywicki, K., Zawadzki, P., Górski, F.: Virtual Reality Production Training System in the Scope of Intelligent Factory, Intelligent Systems in Production Engineering and Maintenance – ISPEM, Proceedings of the First International Conference on Intelligent Systems in Production Engineering and Maintenance ISPEM (2017).
  • 31.Wannarumon S., Reviews of Computer-Aided Technologies for Jewelry Design and Casting, Department of Industrial Engineering, Naresuan University, 2011.
  • 32. Wierzbicka N., et al., Prototyping of Individual Ankle Orthosis Using Additive Manufacturing Technologies Advances in Science and Technology Research Journal, 2017, 11(3), 283-288, DOI: 10.12913/22998624/76070.
  • 33. Vanderploeg A., The application of 3D printing technology in the fashion industry, 2017, 10(2), 170-179, DOI: 10.1080/17543266.2016.1223355.
  • 34. Volonghi P., Signoroni A., Baronio G., 3D Scanning For Hand Orthotic Applications: A Comparative Assessment Between Static And Real-Time Solutions, in Proc. of 7th Int. Conf. on 3D Body Scanning Technologies, Lugano, Switzerland, 2016, 61-69, DOI: 10.15221/16.061.
  • 35.Yin Y., The evolution of production systems from Industry 2.0 through Industry 4.0, International Journal of Production Research, 2018, 56(1-2), 848-861, DOI: 10.1080/00207543.2017.1403664.
  • 36. Zawadzki, P., Żywicki, K.,: Smart product design and production control for effective mass customization in the Industry 4.0 concept, Manag. and Prod. Eng. Rev., 2016, 7 (3), 105–112.
  • 37. Zdobytskyi A., Lobur M., Iwaniec M., Breznitskyi V., Optimization of the Structural Characteristics of the Robotic System Holder, 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Polyana (Svalyava), Ukraine, IEEE, 2019.
  • 38. Zhang, J., Yu, Z., Overview of 3D printing technologies for reverse engineering product design, Aut. Control Comp. Sc, 2016, 50, 91-97.
  • 39. ZORTRAX Support Center, Printing tips, Retrieved 13.08.2020, https://support.zortrax.com/mseries-printing-tips/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0bc9637-f579-4a0d-bb68-709af9603dd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.