Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Conventional methods disregard the interaction effects between concrete creep and tendon relaxation to evaluate the long-term prestressed losses. The main contribution of this paper is to present a new method to compute this interaction for prestressed concrete containment vessels. A time-dependent numerical study is conducted to compare long-term prestress losses in different prediction models. A prestress loss test program is conducted to validate the numerical analysis method for a concrete containment vessel. To perform a more comprehensive numerical study, various variables such as radius to water height ratios (R/H), tendon material (improved or normal relaxation), and different constant temperature conditions are considered in the analysis models. The obtained analytical results are categorized into three classes: creep and shrinkage losses, stress relaxation losses and simultaneous long-term losses. The analytical results show that the (R/H) ratios have no significant effects on long-term prestress loss. Nevertheless, the other investigated variables have impressive effects on the long-term loss evaluation. The analytical results are used to calculate the interaction coefficients, which demonstrate the interaction between concrete creep losses and tendon relaxation. Eventually, the interaction coefficient data are expressed as a function of stress relaxation loss to creep and shrinkage loss ratio.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
132--144
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Department of Civil Engineering, Amirkabir University of Technology, Hafez, Tehran 158754413, Islamic Republic of Iran
autor
- Department of Civil Engineering, Amirkabir University of Technology, Hafez, Tehran 158754413, Islamic Republic of Iran
Bibliografia
- [1] Z.P. Bazant, Numerical determination of long-range stress history of strain history in concrete, Materials and Structures 5 (3) (1972) 135–141.
- [2] Z.P. Bazant, Prediction of concrete creep effects using age adjusted effective modulus method, ACI Journal 69 (20) (1972) 212–217.
- [3] American Concrete Institute (ACI) Committee 209, Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, ACI Report 209.2R-08, American Concrete Institute, Farmington Hills, MI, 2008.
- [4] Comité Euro-international du béton-Fédération Internationale de la précontrainte (CEB-FIP), Model Code for Concrete Structures, Thomas Telford Services Ltd., London, 1990.
- [5] Fédération Internationale du Béton (fib), Structural Concrete: Textbook on Behavior, Design and Performance, Updated Knowledge of the CEB/FIP Model Code 1990, Bulletin No. 2, Vol. 1, Fédération Internationale du Béton, Lausanne, Switzerland, 1999.
- [6] CEB-FIP, fib Model Code for Concrete Structures, Ernst & Sohn Publishing House, Berlin, 2010.
- [7] Z.P. Bazant, S. Baweja, Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3, in: A. Al-Manaseer (Ed.), Adam Neville Symposium: Creep and Shrinkage – Structural Design Effects, ACI SP-194, American Concrete Institute, Farmington Hills, MI, 2000 1–83.
- [8] Z.P. Bazant, M.H. Hubler, M. Jirásek, Improved Estimation of Long-Term Relaxation Function from Compliance Function of Aging Concrete, Journal of Engineering Mechanics 139 (2013) 146–152.
- [9] T.K. Francis, X.T. Si, Accurate time-dependent analysis of concrete bridges considering concrete creep, concrete shrinkage and cable relaxation, Engineering Structures 33 (2011) 118–126.
- [10] P. Lundqvist, L.O. Nilsson, Evaluation of prestress losses in nuclear reactor containments, Nuclear Engineering and Design 241 (2011) 168–176.
- [11] T.H. Hsuan, J.X. Lin, Ultimate analysis of PWR prestressed concrete containment under long-term prestressing loss, Annals of Nuclear Energy 87 (2016) 500–510.
- [12] American Concrete Institute (ACI) Committee 372, Design and Construction of Circular Wire and Strand Wrapped Prestressed Concrete Structures, ACI Report 372R.00, American Concrete Institute, Farmington Hills, MI, 2000.
- [13] SAP 2000 Inc, Integrated Finite Element Analysis and Design of Structures – Software, Computers and Structures Inc., Berkeley, CA, USA, 2015.
- [14] ASCE Standard ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineering, 2016.
- [15] ASCE Standard ASCE/SEI 41-13, Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineering, 2016.
- [16] G. Nawy, Prestressed Concrete – A Fundamental Approach, Pearson Education, Inc., Upper Saddle River, New Jersey, 2010.
- [17] ABAQUS Inc., ABAQUS 6.14 Analysis User's Manual, SIMULIA, 2014.
- [18] M.F. Hessheimer, R. Dameron, Containment Integrity Research at Sandia National Laboratories, Division of Fuel, Engineering & Radiological Research, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission, 2006.
- [19] A. Naaman, Prestressed Concrete Analysis and Design, McGraw-Hill Publishing Company, San Francisco, 1989.
- [20] Regies techniques de conception et de calcul des ouvrages et construction en beton precontraint suivant la methode des etats limites: BPEL 91 revise 99, Eyrolles, France, 1999.
- [21] ASTM C469, Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, Annual Book of ASTM Standards, West Conshohocken, PA, U.S.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0b79112-7abf-40df-9627-e3776dc18f97