PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sn-Pd-Ni Electroplating on Bi2Te3-Based Thermoelectric Elements for Direct Thermocompression Bonding and Creation of a Reliable Bonding Interface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Sn-Ag-Cu-based solder paste screen-printing method has primarily been used to fabricate Bi2Te3-based thermoelectric (TE) modules, as Sn-based solder alloys have a low melting temperature (approximately 220°C) and good wettability with Cu electrodes. However, this process may result in uneven solder thickness when the printing pressure is not constant. Therefore, we suggested a novel direct-bonding method between the Bi2Te3-based TE elements and the Cu electrode by electroplating a 100 μm Sn/ 1.3 μm Pd/ 3.5 μm Ni bonding layer onto the Bi2Te3-based TE elements. It was determined that there is a problem with the amount of precipitation and composition depending on the pH change, and that the results may vary depending on the composition of Pd. Thus, double plating layers were formed, Ni/Pd, which were widely commercialized. The Sn/Pd/Ni electroplating was highly reliable, resulting in a bonding strength of 8 MPa between the thermoelectric and Cu electrode components, while the Pd and Ni electroplated layer acted as a diffusion barrier between the Sn layer and the Bi2Te3 TE. This process of electroplating Sn/Pd/Ni onto the Bi2Te3 TE elements presents a novel method for the fabrication of TE modules without using the conventional Sn-alloy-paste screen-printing method.
Twórcy
  • Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu, Republic of Korea
autor
  • Kyushu University, Graduate School of Engineering, Department of Materials Process Engineering, Fukuoka, Japan
autor
  • Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu, Republic of Korea
Bibliografia
  • [1] L. D. Hicks, effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47, 12727-12731 (1993).
  • [2] R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca-Tascuic, G. Ramanath, Nature Mater. 11, 233 (2012).
  • [3] K. T. Kim, I. J. Son, G. H. Ha, Synthesis and thermoelectric properties of carbon nanotube-dispersed Bi2Te3 matrix composite powders by chemical routes, J. Korean Powder Metall. Inst. 20, 345-349 (2013).
  • [4] Y. Gelbstein, Z. Dashevsky, M. P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B 363, 196-205 (2005).
  • [5] D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, CsBi4Te6: A high-performance thermoelectric material for low-temperature applications, Science 287, 1024-1027 (2000).
  • [6] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Sci. Express 320, 634-638 (2008).
  • [7] C. Wood, Materials for thermoelectric energy conversion, Rep. Prog. Phys. 51, 459-539 (1988).
  • [8] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7, 105-114 (2008).
  • [9] H. Wada, K. Takahashi, T. Nishizaka, Electroless nickel plating to Bi-Te sintered alloy and its properties, J. Mater. Sci. Lett. 9, 810-812 (1990).
  • [10] S. H. Bae, H. J., Jo, I. Son, H. S. Sohn, K. T. Kim, Wet Etching Method for Electroless Ni-P Plating of Bi-Te Thermoelectric Element, J. Nanosci. Nanotechnol. 19, 1749-1754 (2019).
  • [11] S. Han, I. Son, K. T. Kim, Effect of pd-p layer on the bonding strength of bi-te thermoelectric elements, Arch. Metall. Mater. 64, 963-968 (2019).
  • [12] J. Yoon, S. H. Bae, H. S. Sohn, I. Son, K. T. Kim, Y. W. Ju, A Novel Fabrication Method of Bi2Te3-Based Thermoelectric Modules by Indium Electroplating and Thermocompression Bonding, J. Nanosci. Nanotechnol. 18, 6515-6519 (2018).
  • [13] J. Yoon, S. H. Bae, H. S. Sohn, I. Son, K. Park, S. Cho, K. T. Kim, Fabrication of a Bi2Te3-Based Thermoelectric Module using Tin Electroplating and Thermocompression Bonding. J. Nanosci. Nanotechnol. 19, 1738-1742 (2019).
  • [14] S. Chen, C. Chiu, Unusual cruciform pattern interfacial reactions in Sn/Te couples, Scr. Mater. 56, 97-99 (2007).
  • [15] P. A. Villars, Three-dimensional structural stability diagram for 998 binary AB intermetallic compounds, J. Less-Common Met. 92, 215-238 (1983).
  • [16] Y. Lan, D. Wang, G. Chen, Z. Ren, Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials, Appl. Phys. Lett. 92, 101910 (2008).
  • [17] W. P. Lin, D. E. Wesolowski, C. C. Lee, Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules, J. Mater. Sci. Mater. Electron. 22, 1313-1320 (2011).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0b76eb8-9721-4d66-b23b-e1b42585e83b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.