Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the methods to prevent unsuitable lubrication of moving components of devices and machinery is using bi-metal and three-metal bearings. Centrifugal casting process is one of the manufacturing methods that is used for such bearings. In this study, the purpose is microstructure evaluation of the bonding location and length determination of diffusion bond in structural steel-bronze. A mold made of structural steel with inner diameter of 240mm, length of 300mm and thickness of 10mm was coated by a 6mm film of bronze under centrifugal casting process. At first, a bronze ingot with dimension of 5mm×10mm×20mm is located inside of the hollow cylindrical mold and then the two ends of it will be sealed. During mold rotation with the rate of 800 rpm, two high power flames are used for heating the mold under Ar gas atmosphere to melt the bronze ingot at 1000˚C. After 15minutes, the system is cooled rapidly. Results showed that the diffusion bonding of bronze in structural steel to depth of 1.2μm from the bonding line was obtained. In this bonding, copper element was diffused to 50% of its initial concentration.
Czasopismo
Rocznik
Tom
Strony
99--104
Opis fizyczny
Bibliogr. 11 poz., il., tab., wykr.
Twórcy
autor
- Department of Engineering, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
autor
- Department of Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Bibliografia
- [1] A.S.M. Handbook, Vol. 6, (1993). Welding, Brazing, and Soldering, 9 ed., ASM International, Ohio, USA.
- [2] Liu, Z.H., Zhang, D.Q., Sing, S.L., Chua, C.K. & Loh, L.E. (2014). Interfacial characterization of SLM parts in multimaterial processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy, Materials Characterizatio. 94. 116-125.
- [3] Atabaki, M.M. Wati, J.N., Idris, J.B. (2011). Transient liquid phase diffusion bonding of stainless steel 304 using copper and aluminium filler interlayers, ASM Heat Treating Society - 26th Conference and Exposition: Gearing Up for Success, 20-43.
- [4] Sabet Ghadam H., Zarei Hanzaki A., Hadian A., Araei A. (2008) Evaluation of Time and Pressure Parameters on Mechanical And Microstructural Properties of Cu-SS 410 Diffusion Bonding Containing Nickel Interlayer, The Second Joint Conference of Iranian Metallurgical Engineers Society And Iranian Foundry Society, Islamic Azad University of Karaj, Karaj, 1-10.
- [5] Yang, Z.-h., Shen, Y.-f., Wang, Z-.y. & Cheng, J.-l. (2014). Tungsten/steel diffusion bonding using Cu/W–Ni/Ni multiinterlayer, Transactions of Nonferrous Metals Society of China. 24, 2554-2558.
- [6] Yuan, K., Tang, Y., Deng, J., Luo, & Sheng, G. (2013). Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer, Materials & Design. 52, 359-366.
- [7] Khanchehgardan, A., Rezazadeh, G. & Shabani, R. (2013). Effect of mass diffusion on the damping ratio in a functionally graded micro-beam, Composite Structures. 106, 15-29.
- [8] Fillabi, M.G., Kokabi, A.H. & Simchi, A.R. (2006). Study of the Effect of powder Particle Size on Diffusion Bonding Strength of Fe-5%Cu powder to plain carbon Steels, International Journal of Engineering Science. 1(17), 41-46.
- [9] Zhao, J.C. (2007). Chapter seven - Phase diagram determination using diffusion multiples, in: J.C. Zhao (Ed.) Methods for Phase Diagram Determination, Elsevier Science Ltd, Oxford, 246-272.
- [10] Wang, Y., Luo, J., Wang, X. & Xu, X. (2013). Interfacial characterization of T3 copper/35CrMnSi steel dissimilar metal joints by inertia radial friction welding, International Journal of Advanced Manufacturing Technology. 68, 1479- 1490.
- [11] Xiong, J.-t., Xie, Q. Li, J.-l., Zhang, F.-s. & Huang, W.-d. (2012). Diffusion Bonding of Stainless Steel to Copper with Tin Bronze and Gold Interlayers, Journal of Materials Engineering and Performance. 21, 33-37.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0b68609-e976-4e30-b3b3-174ef9e3c9da