PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of the accuracy of Hogg and Fuerstenau's model in predicting the power draw of ball mills based on determining the grinding media’s dynamic voidage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the development of tumbling mills' power models, the voidage of grinding media is assumed to be static and equal to 40%. While the grinding media’s voidage is dynamic; and hence is varied by changing the operating parameters. In this paper, to improve the Hogg and Fuerstenau model's accuracy in predicting the ball mills' power draw, the grinding media's static and dynamic voidage was studied for Bond's proposed ball size distributions (BSD) for the ball mills' first filling. To this end, by scaling down balls to one-tenth of actual size, developing a novel method to measure the dynamic voidage, and employing the three-level factorial method, a separate empirical model was developed for determining the dynamic voidage of each Bond's BSD with respect to mill's fractional filling and rotating speed. Moreover, using the multiple regression method, a general empirical model was derived to determine the dynamic voidage of each supposed BSD based on calculating the mean absolute deviation of balls diameter (MAD). Results indicated that grinding media's dynamic voidage increases with an increase in rotating speed and a decrease in fractional filling and balls diameter's MAD. The maximum and minimum static and dynamic voidage occurred for the seventh and first Bond's BSDs. By employing an industrial database and analyzing the mean absolute percentage error (MAPE) of predicted ball mills' power draw, it was found that the Hogg and Fuerstenau model's accuracy enhances by calculating the load's bulk density based on the grinding media's dynamic voidage.
Rocznik
Strony
art. no. 153380
Opis fizyczny
Bibliogr. 57 poz. rys., tab
Twórcy
  • Mining engineering faculty, Amirkabir University of Technology, Tehran, Iran
autor
  • Mining engineering faculty, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • ALDRICH, C., 2013. Consumption of steel grinding media in mills - A review. Minerals Engineering, 49, 77-91.
  • AMANNEJAD, M., BARANI, K., 2020. Effects of ball size distribution and mill speed and their interactions on ball milling using DEM. Mineral Processing and Extractive Metallurgy Review, 42, 1-6.
  • Benyahia, F., O'Neill, K. E., 2005. Enhanced Voidage Correlations for Packed Beds of Various Particle Shapes and Sizes. Particulate Science and Technology, 23, 169–177.
  • BIERWAGEN, G.P., SANDERS, T.E, 1974. Studies of the Effects of Particle Size Distribution on the Packing Efficiency of Particles. Powder Technology, 10, 111-119.
  • BOND, F.C., 1958. grinding ball size selection. Trans AIME, 211, 592-595.
  • CHRISTINE, F., KADER, G., MEWBORN, D., MORENO, J., Peck, R., Perry, M., Scheaffer, R., 2007. Guidelines for Assessment and Instruction in Statistics Education. Boston: American Statistical Association.
  • CLEARY, P., AND OWEN, P., 2019, effect of particle shape on structure of the charge and nature of energy utilization in a SAG mill. Mineral engineering, 132, pp. 48-68.
  • CORNEILLE, E. K., 1987. Design, capital and operating costs of mineral processing plants. Mineral Processing and Extractive Metallurgy Review, 4, 255-288.
  • DAVIS, E.W, 1919. Fine crushing in ball mills. AIME Transactions, 61, 250 -296.
  • DESMOND, K.W., WEEKS, E.R., 2014. Influence of particle size distribution on random close packing of spheres. Physical review Journal, 90, 022041-6.
  • DJORDJEVIC, N., 2003. Discrete element modelling of power draw of tumbling mills. Mineral Processing and Extractive Metallurgy, 112, 109-114.
  • DOLL, A. G., 2016. An updated data set for sag mill power model calibration. XXVIII International Mineral Process Congress, Quebec, Canada, 1-22.
  • DRZYMALA, J., 2007. Mineral processing: foundations of theory and practice of metallurgy. Poland: Wroclaw University of Technology
  • ERDEM, A. S., ERGUN, S. L., BENEZER, A. H., 2004. Calculation of the power draw of dry multi-compartment Ball mills. Physicochemical Problems of Mineral Processing, 38, 221-230.
  • FOSZCZ, D., WOŁOSIEWICZ-GŁAB, M., KRAUZE, O., OGONOWSKI, S., GAWENDA, T., 2019. Influence of grinding media movement on the throughput of dry grinding circuit with the electromagnetic mill. MEC 2019, 1-6.
  • GLENCORETECHNOLOGY. IsaMill™ uses horizontal milling to secure better energy efficiency, product size and availability. Available online: https://www.glencoretechnology.com/en/technologies/isamill/ (accessed on 26 July 2022).
  • GOLPAYEGANI, M., REZAI, B., 2022. Modeling the power draw of tumbling mills: A comprehensive review. Physicochem. Probl. Miner. Process., 58, 151600.
  • GOLPAYEGANI, M.H., ABDOLLAHZADEH, A.A., 2017. Optimization of operating parameters and kinetics for chloride leaching of lead from melting furnace slag. Trans. Nonferrous Met. Soc. China, 27, 2704−2714.
  • GÓRALCZYK. M., KROT, P., ZIMROZ, R., AND OGONOWSKI, S., 2020. Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview. energies, 13, 6735.
  • GOVENDER, N., RAJ RAJAMANI, R. K., DANIEL N. WILKE, D. N., CHUAN-YU WU, C., JOHANNES KHINAST, J., GLASSER, B. J., 2018. Effect of particle shape in grinding mills using a GPU based DEM code. Minerals Engineering, 129, 71-84.
  • GOVENDER, N., RAJAMANI, R. K., KOK, S., WILKE, D. N., 2015. Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework. Minerals Engineering, 79, 152-168.
  • Gutiérrez, A., Ahues, D., González, F., Merino, P., 2019. Simulation of Material Transport in a SAG Mill with Different Geometric Lifter and Pulp Lifter Attributes Using DEM. Mining, Metallurgy & Exploration, 36, 431–440.
  • Harris, J. W., Stocker, H., 1998. Segment of a Circle. In: Handbook of Mathematics and Computational Science. New York; Springer-Verlag.
  • Herdan, G., 1960. Small Particle Statistics. 2rd ed, New York: Butterworth.
  • Hesami, R., 2016. A laboratory investigation of the effect of charge density on power draw in tumbling mills. Master thesis. Bahonar University. (In Persian)
  • Hilden, M. M., Powell M.S., Yahyaei, M., 2021. an improved method for grinding mill filling measurement and the estimation of load volume and mass. Minerals engineering, 160, 106638
  • HLOSTA, J., JEZERSKÁ, L., ROZBROJ, J., ŽUROVEC, D., NEˇCAS, J., ZEGZULKA, J., 2020. DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1— Determination of the DEM Parameters and Calibration. Processes, 8, 1-26.
  • HOGG, R., AND FUERSTENAU, D.W., 1972. Power relationships for tumbling mills. Trans. SME/AIME, 252, 418 -423.
  • KIANGI, K., POTAPOV, A., MOYS, M.H., 2013. DEM validation of media shape effects on the load behaviour and Power in a dry pilot mill. Minerals Engineering, 46, 52-59.
  • KIM, S., AND KIM, H. 2016. A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32, 669-679.
  • KRAWCZYKOWSKI, D., FOSZCZ, D., OGONOWSKI, S., GAWENDA, T., WOŁOSIEWICZ-GŁAB, M., 2018. Analysis of the working chamber size influences the effectiveness of grinding in the electromagnetic mill. MEC 2018, 1- 14.
  • LATCHIREDDI, S.R., 2002. modeling the performance of grates and pulp lifters in autogenous and Semiautogenous mills. PhD thesis. University of Queensland.
  • LI, T., S, LI., ZHAO, J., LU, P, MENG, L., 2012. Sphericities of non-spherical objects. Particuology, 10, 97-104.
  • LIDDELL, K.S., MOYS, M.H., 1988. the effects of mill speed and filling on the behaviour of the load in a rotary grinding mill. Journal of South African Ins. Min. Metall., 88, 49 - 57.
  • MISHRA, B.K., RAJAMANI, R.K., 1992. the discrete element method for the simulation of ball mills. Applied mathematical modeling, 16, 598-604.
  • MOGROUP. Metso Outotec Vertimill- Energy efficient gravity induced mill. Available online: https://www.mogroup.com/portfolio/vertimill/ (accessed on 26 July 2022).
  • MOLYCOP, 2021, https://molycop.com.
  • MONTGOMERY, D.C., 2005. Design and Analysis of Experiments. 6rd ed. New York: John Wiley and Sons.
  • MORRELL, S., 1993. the prediction of power draw in wet tumbling mills. PhD thesis. University of Queensland.
  • MORRELL, S., 2016. modelling the influence on power draw of the slurry phase in Autogenous (AG), Semi-autogenous (SAG) and ball mills. Minerals engineering, 89, 145-156.
  • MORRELL, S., 2019. Testing and calculations for Comminution machines. in: Kumar Kavatra, S., Young, C.A., (Eds.), SME Mineral Processing & Extractive Metallurgy Handbook. Englewood: Society for Mining, Metallurgy, and Exploration (SME).
  • MOYS, M.H., 1993. A Model of mill power as affected by mill speed, load volume, and liner design. The Southern African Institute of Mining and Metallurgy, 93, 135-141.
  • PANJIPOUR, R., BARANI, K., 2014. the effect of ball size distribution on power draw, charge motion and breakage mechanism of tumbling ball mill by discrete element method (DEM) simulation. Physicochem. Probl. Miner. Process, 54, 258-269.
  • RAJAMANI, R.K., KUMAR, P., GOVENDR, N., 2019. The evaluation of grinding mill power models. Mining, Metallurgy and Exploration, 36, 151-157.
  • SHAHBAZI, B., JAFARI, M., PARIAN, M., ROSENKRANZ. J., CHEHREH CHELGANI, S., 2020. Study on the impacts of media shapes on the performance of tumbling mills – A review. Minerals Engineering, 157, 106490.
  • SOHN, H. Y., MORELAND, C., 1968. The effect of particle size distribution on packing density. CJChE, 46, 162-167.
  • SOLEYMANI YAZDI, M.R., KHORRAM, A., 2010. Modeling and Optimization of Milling Process by using RSM and ANN Methods. IJET, 2, 474-480.
  • TAVARES, L., 2017. A Review of Advanced Ball Mill Modeling. Powder and particle, 34, pp. 106-124.
  • U.S. DOE, 2007. Mining industry energy bandwidth study. Washington, United States: U.S. Department of Energy.
  • VALERY, W., JANKOVIC, A., 2002. the future of Comminution. 34th International October Conference on Mining and Metallurgy, 287-298.
  • VAN NIEROP, M.A., GLOVER, G., HINDE, A.L., MOYS, M.H, 2001. A Discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill. Int. J. Miner. Process, 61, 77–92.
  • WHITE, H.A., 1905. Theory of tube-mill action. Jour. Chem. Met. and Min. Soc. of South Africa, 5, 290-305.
  • WILLS, B. A., FINCH, J. A., 2016. mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Amsterdam: Elsevier.
  • WOŁOSIEWICZ-GŁAB, M., FOSZCZ, D., GAWENDA, T., SZYMON, O., 2016. Design of an electromagnetic mill. Its technological and control system structures for dry milling. MEC 2016, 1-6
  • WOŁOSIEWICZ-GŁAB, M., FOSZCZ, D., SARAMAK, D., GAWENDA, T., KRAWCZYKOWSKI, D., 2017. Analysis of a grinding efficiency in the electromagnetic mill for variable process and feed parameters. MEC 2017, 1-6.
  • YANG, W. C., 2003. Liquid-solids Fluidization. in: Yang, W. C., (Ed.), Handbook of Fluidization and Fluid−Particle System. New York: Marcel Dekker.
  • ZHANG, J., BAI, Y., DONG, H., WU, Q., YE, X., 2014. Influence of ball size distribution on grinding effect in horizontal planetary ball mill. Advanced Powder Technology, 25, 983–90.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0b54533-f0f1-43a5-ace6-ef585aa2c8e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.