PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on Moisture Effects on Powder Flow and Mechanochemical Improvement of Powder Flowability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent findings on some unsolved powder rheology problems and new challenges regarding mechanochemical powder processing and flow modelling are presented. There is remarkable difference in rheology when processing moist powders in static or dynamic conditions. Despite of regular trends of shear stress changes with humidity found in the both cases, some exceptions revealed the significant impact of particles size and their hygroscopic nature as example. Mechanochemical methods of high-energy interactive mixing of highly cohesive powders doped with nano-sized solid admixture enabled their flowability to be improved considerably. Using statistical approach, more general routine is proposed that allow the optimal mixing parameters to be reliably predicted with limited number of experiments needed. Ability to flow of some hygroscopic powders was examined with DEM method and extreme sensitivity of model output to input particle properties was found. The common DEM routine towards powder flow prediction is therefore suggested to be replaced with approach featuring in using DEM method to identify some unknown powder flow factors.
Słowa kluczowe
Twórcy
  • Department of Chemical and Process Engineering, Rzeszów University of Technology, al. Powstanców Warszawy 6, 35-959 Rzeszów, Poland
  • Department of Chemical and Process Engineering, Rzeszów University of Technology, al. Powstanców Warszawy 6, 35-959 Rzeszów, Poland
  • Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
  • Department of Chemical and Process Engineering, Rzeszów University of Technology, al. Powstanców Warszawy 6, 35-959 Rzeszów, Poland
  • TEREZ Performance Polymers Sp. z o.o. Rogoźnica 304, 36-060 Głogów Małopolski, Poland
  • Department of Chemical and Process Engineering, Rzeszów University of Technology, al. Powstanców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Harnby N, Hawkins AE, Opalinski I. Measurement of the adhesional force between individual particles with moisture present part 2: A novel measurement technique. Chem Eng Res Des. 1996.
  • 2. Harnby N, Hawkins AE, Opalinski I. Measurement of the adhesional force between individual particles with moisture present part 1 : A review. Chem Eng Res Des. 1996.
  • 3. Thakur SC, Ahmadian H, Sun J, Ooi JY. An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology. 2014.
  • 4. Sarnavi HJ, Noor Mohammadi A, Modares Motlagh A, Rahmani Didar A. Dem model of wheat grains in storage considering the effect of moisture content in direct shear test. Res J Appl Sci Eng Technol. 2013.
  • 5. Ogata K. A review: Recent progress on evaluation of flowability and floodability of powder. KONA Powder and Particle Journal. 2019.
  • 6. Tardos GI. A fluid mechanistic approach to slow, frictional flow of powders. Powder Technol. 1997;.
  • 7. Opaliński I, Olechowski M, Chutkowski M. Effect of moisture on behaviour of powders. Part 2. Changes in rheological characteristics. Przem Chem. 2011;90/10:1886 – 1889.
  • 8. CEN Eurocode 1. Eurocode 1 Actions on structures Part 4: Silos and tanks. Eurocode 1. 2006.
  • 9. Opaliński I, Olechowski M, Chutkowski M. Effect of moisture on behaviour of powders. Part 1. Structural and strength alterations. Przem Chem. 2011;90/10:1882 – 1885.
  • 10. Opaliński I, Chutkowski M, Stasiak M. Characterizing moist food-powder flowability using a Jenike shear-tester. J Food Eng. 2012;108(1).
  • 11. Olechowski M. The influence of moisture on rheological properties of powders. 2012.
  • 12. Przywara M. The influence of moisture and composition of biomass with coal mixtures on mechanical and rheological properties of solid biomass. 2014.
  • 13. Forte G, Clark PJ, Yan Z, Stitt EH, Marigo M. Using a Freeman FT4 rheometer and Electrical Capacitance Tomography to assess powder blending. Powder Technol. 2018.
  • 14. Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders A comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007.
  • 15. Li M, Leturia M, Saleh K. Analysis of the periodic motion in a powder rheometer and development of a new flowability testing method. KONA Powder Part J. 2018.
  • 16. Wang N, Lu H, Xu J, Guo X, Liu H. Velocity profiles of granular flows down an inclined channel. Int J Multiph Flow. 2019.
  • 17. Leaper MC, Fisk E, Browne R. Feasibility study to investigate caking in washing powder formulations using a Freeman FT4 powder rheometer. Part Sci Technol. 2019.
  • 18. Yun H, Dong L, Wang W, Bing Z, Xiangyun L. Study on the flowability of TC4 Alloy Powder for 3D Printing. In: IOP Conference Series: Materials Science and Engineering. 2018.
  • 19. Hertel M, Schwarz E, Kobler M, Hauptstein S, Steckel H, Scherließ R. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations. Int J Pharm. 2018.
  • 20. Vivacqua V, López A, Hammond R, Ghadiri M. DEM analysis of the effect of particle shape, cohesion and strain rate on powder rheometry. Powder Technol. 2019.
  • 21. Jin Y, Lu HF, Guo XL, Gong X. The effect of water addition on the surface energy, bulk and flow properties of lignite. Fuel Process Technol. 2018.
  • 22. Lupo M, Schütz D, Riedl E, Barletta D, Poletto M. Assessment of a powder rheometer equipped with a cylindrical impeller for the measurement of powder flow properties at low consolidation. Powder Technol. 2019.
  • 23. Mohylyuk V, Styliari ID, Dmytryi N, Reiss P, Rajeev D. Assessment of the effect of Cellets’ particle size on the flow in a Wurster fluid-bed coater via powder rheology. J Drug Deliv Sci Technol. 2019;54.
  • 24. Opaliński I, Chutkowski M, Hassanpour A. Rheology of moist food powders as affected by moisture content. Powder Technol. 2016;294:315–22.
  • 25. Klausner JF, Chen D, Mei R. Experimental investigation of cohesive powder rheology. In: Powder Technology. 2000.
  • 26. Opaliński I, Olechowski M, Chutkowski M. Effect of moisture on behaviour of powders. Part 2. Changes in rheoiogicai characteristics. Przem Chem. 2011;90(10).
  • 27. Vogt E, Opaliński I. The comparison of properties of hydrophobized limestone powders produced in different methods. In: Chemical Engineering Transactions. 2009.
  • 28. Zulfiqar M, Moghtaderi B, Wall TF. Flow properties of biomass and coal blends. Fuel Process Technol. 2006.
  • 29. Chen P, Yuan Z, Shen X, Zhang Y. Flow properties of three fuel powders. Particuology. 2012.
  • 30. Guo Q, Liu H, Chen X, Li S, Guo X, Gong X. Research on the flow properties of the blended particles of rice straw and coal. Fuel. 2012.
  • 31. Przywara M, Oliwa J, Opaliński I. Influence of moisture content on flowability of alternative solid biofuels. Part 2. Mixtures of biomass and coal. Inżynieria i Apar Chem. 2014;53:107–9.
  • 32. Macho O, Eckert M, Tomášová B, Peciar P, Ščasný M, Fekete R, et al. Modifying the properties of finely ground limestone by tumbling granulation. Sel Sci Pap J Civ Eng. 2016.
  • 33. Ohsaki S, Nakahara Y, Nakamura H, Watano S. Flowability improvement of soft metal-organic framework particles by wet granulation. Microporous Mesoporous Mater. 2020.
  • 34. Schiano S, Chen L, Wu CY. The effect of dry granulation on flow behaviour of pharmaceutical powders during die filling. Powder Technol. 2018.
  • 35. Szulc K, Lenart A. Effect of agglomeration on flowability of baby food powders. J Food Sci. 2010.
  • 36. Etti CJ, Yusof YA, Chin NL, Mohd Tahir S. Effects of formulation on flowability of selected herbal powders using compendial methods and powder flow analyser. Int Food Res J. 2016.
  • 37. Lapierre-Boire LP, Blais C, Pelletier S, Chagnon F. Improvement of flow of an iron-copper-graphite powder mix through additions of nanoparticles. Powder Technol. 2016.
  • 38. Ma B, Jiang Q, Huang J, Wang X, Leng J. Effect of different silica particles on flowability of gypsum powder for 3D powder printing. Constr Build Mater. 2019.
  • 39. Morin G, Briens L. The effect of lubricants on powder flowability for pharmaceutical application. AAPS PharmSciTech. 2013.
  • 40. Stasiak M, Molenda M, Horabik J, Mueller P, Opaliński I. Mechanical properties of potato starch modified by moisture content and addition of lubricant. Int Agrophysics. 2014.
  • 41. Qu L, Zhou Q, Denman JA, Stewart PJ, Hapgood KP, Morton DAV. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders. Eur J Pharm Sci. 2015.
  • 42. Alonso M, Alguacil FJ. Dry mixing and coating of powders. Rev Metal. 1999.
  • 43. Saharan V, Kukkar V, Kataria M, Kharb V, Choudhury P. Ordered mixing: mechanism, process and applications in pharmaceutical formulations. Asian J Pharm Sci. 2008.
  • 44. Pfeffer R, Dave RN, Wei D, Ramlakhan M. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol. 2001.
  • 45. Sharma R, Setia G. Mechanical dry particle coating on cohesive pharmaceutical powders for improving flowability A review. Powder Technology. 2019.
  • 46. Zhou Q, Qu L, Larson I, Stewart PJ, Morton DAV. Improving aerosolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach. Int J Pharm. 2010.
  • 47. Zhou Q, Armstrong B, Larson I, Stewart PJ, Morton DAV. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders. Eur J Pharm Sci. 2010.
  • 48. Zhou Q, Qu L, Larson I, Stewart PJ, Morton DAV. Effect of mechanical dry particle coating on the improvement of powder flowability for lactose monohydrate: A model cohesive pharmaceutical powder. Powder Technol. 2011.
  • 49. Zhou Q, Qu L, Gengenbach T, Denman JA, Larson I, Stewart PJ, et al. Investigation of the extent of surface coating via mechanofusion with varying additive levels and the influences on bulk powder flow properties. Int J Pharm. 2011.
  • 50. Zhou Q, Armstrong B, Larson I, Stewart PJ, Morton DAV. Improving powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating. J Pharm Sci. 2010.
  • 51. Zhou Q, Armstrong B, Larson I, Stewart PJ, Morton DAV. Effect of host particle size on the modification of powder flow behaviours for lactose monohydrate following dry coating. In: Dairy Science and Technology. 2010.
  • 52. Zhou Q, Qu L, Gengenbach T, Larson I, Stewart PJ, Morton DAV. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers. AAPS PharmSciTech. 2013.
  • 53. Qu L, Morton D, Zhou Q. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms. Curr Pharm Des. 2015.
  • 54. Jallo LJ, Ghoroi C, Gurumurthy L, Patel U, Davé RN. Improvement of flow and bulk density of pharmaceutical powders using surface modification. Int J Pharm. 2012.
  • 55. Sato A, Serris E, Grosseau P, Thomas G, Chamayou A, Galet L, et al. Effect of operating conditions on dry particle coating in a high shear mixer. Powder Technol. 2012.
  • 56. Mullarney MP, Beach LE, Davé RN, Langdon BA, Polizzi M, Blackwood DO. Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol. 2011.
  • 57. Huang Z, Scicolone J V., Gurumuthy L, Davé RN. Flow and bulk density enhancements of pharmaceutical powders using a conical screen mill: A continuous dry coating device. Chem Eng Sci. 2015.
  • 58. Han X, Ghoroi C, To D, Chen Y, Davé R. Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. Int J Pharm. 2011.
  • 59. Han X, Ghoroi C, Davé R. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading. Int J Pharm. 2013.
  • 60. Ramlakhan M, Wu CY, Watano S, Dave RN, Pfeffer R. Dry particle coating using magnetically assisted impaction coating: Modification of surface properties and optimization of system and operating parameters. In: Powder Technology. 2000.
  • 61. Yang J, Sliva A, Banerjee A, Dave RN, Pfeffer R. Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 2005.
  • 62. Jallo LJ, Schoenitz M, Dreizin EL, Dave RN, Johnson CE. The effect of surface modification of aluminum powder on its flowability, combustion and reactivity. Powder Technol. 2010.
  • 63. Qian Z, Wang P, Gogos CG. Modifying CaCO3 fillers with nanoparticles using a fluid energy mill. In: Annual Technical Conference ANTEC, Conference Proceedings. 2011.
  • 64. Sonoda R, Horibe M, Oshima T, Iwasaki T, Watano S. Improvement of dissolution property of poorly water-soluble drug by novel dry coating method using planetary ball mill. Chem Pharm Bull. 2008.
  • 65. Fokina EL, Budim NI, Kochnev VG, Chernik GG. Planetary mills of periodic and continuous action. In: Journal of Materials Science. 2004.
  • 66. Leś K, Kowalski K, Opaliński I. Optimisation of process parameters in high energy mixing as a method of cohesive powder flow ability improvement. Chem Process Eng Inz Chem i Proces. 2015.
  • 67. Leś K, Opaliński I. Prospective Application of Response Surface Methodology for Predicting High-Energy Mixing Process Conditions towards Fine Powders Flow Improvement. Adv Sci Technol Res J. 2021.
  • 68. Opaliński I, Leś K, Kozdra S, Przywara M, Chauveau J, Bonnet A. Prospective Application of High Energy Mixing for Powder Flow Enhancement and Better Performance of Hydrogen and Energy Storage Systems. In: Ochowiak M, Woziwodzki S, Doligalski M, Mitkowski P., editors. Practical Aspects of Chemical Engineering. 2018. p. 349–61.
  • 69. Leś K, Kozdra S, Opaliński I. Optimization of flow indices by response surface methodology in highenergy mixing of powders. Przem Chem. 2017.
  • 70. Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979.
  • 71. Coetzee CJ. Review: Calibration of the discrete element method. Powder Technology. 2017.
  • 72. Martín MM, Hassanpour A, Pasha M, Alizadeh Behjani M. Discrete Element Method Applications in Process Engineering. In: Introduction to Software for Chemical Engineers. 2019.
  • 73. Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science. 2008.
  • 74. Chialvo S, Sun J, Sundaresan S. Bridging the rheology of granular flows in three regimes. Phys Rev E Stat Nonlinear, Soft Matter Phys. 2012.
  • 75. Roy S, Luding S, Weinhart T. A general(ized) local rheology for wet granular materials. New J Phys. 2017.
  • 76. Pöschel T, Schwager T. Computational granular dynamics: Models and algorithms. Computational Granular Dynamics: Models and Algorithms. 2005.
  • 77. Do HQ, Aragón AM, Schott DL. A calibration framework for discrete element model parameters using genetic algorithms. Adv Powder Technol. 2018.
  • 78. Simons TAH, Weiler R, Strege S, Bensmann S, Schilling M, Kwade A. A ring shear tester as calibration experiment for DEM simulations in agitated mixers A sensitivity study. In: Procedia Engineering. 2015.
  • 79. Hare C, Zafar U, Ghadiri M, Freeman T, Clayton J, Murtagh MJ. Analysis of the dynamics of the FT4 powder rheometer. Powder Technol. 2015.
  • 80. Wilkinson SK, Turnbull SA, Yan Z, Stitt EH, Marigo M. A parametric evaluation of powder flowability using a Freeman rheometer through statistical and sensitivity analysis: A discrete element method (DEM) study. Comput Chem Eng. 2017.
  • 81. Coetzee CJ, Els DNJ. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Comput Electron Agric. 2009.
  • 82. Cheng H, Shuku T, Thoeni K, Tempone P, Luding S, Magnanimo V. An iterative Bayesian filtering framework for fast and automated calibration of DEM models. Comput Methods Appl Mech Eng. 2019.
  • 83. Orefice L, Khinast JG. A novel framework for a rational, fully-automatised calibration routine for DEM models of cohesive powders. Powder Technol. 2020.
  • 84. Desai PS, Mehta A, Dougherty PSM, Higgs FC. A rheometry based calibration of a first-order DEM model to generate virtual avatars of metal Additive Manufacturing (AM) powders. Powder Technol. 2019.
  • 85. Pantaleev S, Yordanova S, Janda A, Marigo M, Ooi JY. An experimentally validated DEM study of powder mixing in a paddle blade mixer. Powder Technol. 2017.
  • 86. Zhou H, Hu Z, Chen J, Lv X, Xie N. Calibration of DEM models for irregular particles based on experimental design method and bulk experiments. Powder Technol. 2018.
  • 87. Lommen S, Schott D, Lodewijks G. DEM speedup: Stiffness effects on behavior of bulk material. Particuology. 2014.
  • 88. Avci B, Wriggers P. A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Appl Mech Trans ASME. 2012.
  • 89. Guo N, Zhao J. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng. 2014.
  • 90. Haddad H, Guessasma M, Fortin J. A DEM-FEM coupling based approach simulating thermomechanical behaviour of frictional bodies with interface layer. Int J Solids Struct. 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0b38383-3941-4bfb-810a-bc3735997d65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.