PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent results on well-posedness and optimal control for a class of generalized fractional Cahn–Hilliard systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we give an overview of results for Cahn–Hilliard systems involving fractional operators that have recently been established by the authors of this note. We address problems concerning existence, uniqueness, and regularity of the solutions to the system equations, and we study optimal control problems for the systems. The well-posedness results are valid for a wide class of fractional operators of spectral type and for the typical double-well nonlinearities appearing in the Cahn–Hilliard system equations, namely the classical differentiable, the logarithmic, and the nondifferentiable double obstacle potentials. While this also applies to the existence of optimal controls in the related optimal control problems, the establishment of first-order necessary optimality conditions requires imposing much stronger assumptions on the admissible class of fractional operators. One main reason for this is the necessity of deriving suitable differentiability properties for the associated control-to-state mapping. Nevertheless, it turns out that also in the singular case of logarithmic potentials, the first-order necessary optimality conditions can be established under suitable assumptions, and a “deep quench” approximation, based on the results derived for logarithmic nonlinearities makes even the case of double obstacle potentials accessible.
Rocznik
Strony
153--197
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
  • Dipartimento di Matematica “F. Casorati”, Universit`a di Pavia and Research Associate at the IMATI – C.N.R. Pavia via Ferrata 5, 27100 Pavia, Italy
  • Dipartimento di Matematica “F. Casorati”, Universit`a di Pavia and Research Associate at the IMATI – C.N.R. Pavia via Ferrata 5, 27100 Pavia, Italy
  • Department of Mathematics Humboldt-Universit¨at zu Berlin Unter den Linden 6, 10099 Berlin, Germany
  • Weierstrass Institute for Applied Analysis and Stochastics Mohrenstrasse 39, 10117 Berlin, Germany
Bibliografia
  • [1] AINSWORTH, M. and MAO, Z. (2017) Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J. Numer. Anal. 55, 1689-1718.
  • [2] AKAGI, G., SCHIMPERNA, G. and SEGATTI, A. (2016) Fractional CahnHilliard, Allen-Cahn, and porous medium equations. J.Differential Equations 261, 2935-2985.
  • [3] AKAGI, G., SCHIMPERNA, G. and SEGATTI, A. (2019) Convergence of solutions for the fractional Cahn–Hilliard system. J. Funct. Anal. 276, 2663-2715.
  • [4] ANTIL, H., KHATRI, R. and WARMA, M. (2019) External optimal control of nonlocal PDEs. Inverse Problems, 35, 084003, 35 pp.
  • [5] ANTIL, H. and OT´AROLA, E. (2015) A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53, 3432-3456.
  • [6] ANTIL, H. and OT´AROLA, E. (2018) An a posteriori error analysis for an optimal control problem involving the fractional Laplacian. IMA J. Numer. Anal. 38, 198-226.
  • [7] ANTIL, H., OT´AROLA, E. and SALGADO, A. J. (2016) A space-time fractional optimal control problem: analysis and discretization. SIAM J. Control Optim. 54, 1295-1328.
  • [8] ANTIL, H., OT´AROLA, E. and SALGADO, A. J. (2018) Optimization with respect to order in a fractional diffusion model: analysis, approximation and algorithmic aspects. J. Scientific Computing, 77, 204-224.
  • [9] ANTIL, H., PFEFFERER, J. and ROGOVS, S. (2017) Fractional operators with inhomogeneous boundary conditions: analysis, control and discretization. Commun. Math. Sci., 16, 1395-1426.
  • [10] ANTIL, H. and WARMA, M. (2017) Optimal control of fractional semilinear PDEs. To appear in ESAIM Control Optim. Calc. Var., see also preprint arXiv:1712.04336 [math.OC], 1-27.
  • [11] ANTIL, H. and WARMA, M. (2019) Optimal control of the coefficient for the regional fractional p–Laplace equation: approximation and convergence. Math. Control Relat. Fields 9, 1-38.
  • [12] BARBU, V. (1981) Necessary conditions for nonconvex distributed control problems governed by elliptic variational inequalities. J. Math. Anal. Appl. 80, 566-597.
  • [13] BISWAS, T., DHARMATTI, S. and MOHAN, M. T. (2018a) Pontryagin’s maximum principle for optimal control of the nonlocal Cahn–Hilliard– Navier–Stokes systems in two dimensions. Preprint arXiv:1802.08413 [math.OC], 1-36.
  • [14] BISWAS, T., DHARMATTI, S. and MOHAN, M. T. (2018b) Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations. Preprint arXiv:1803.11337 [math.AP], 1-26.
  • [15] BISWAS, T., DHARMATTI, S. and MOHAN, M. T. (2018c) Second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations. Preprint arXiv:1809.10297 [math.OC], 1-15.
  • [16] BONFORTE, M., FIGALLI, A. and V´AZQUEZ, J. L. (2018) Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calc. Var. Partial Differential Equations, 57, Art. 57, 34 pp.
  • [17] BONITO, A., BORTHAGARAY, J. P., NOCHETTO, R. H., OT´AROLA, E. and SALGADO, A. J. (2018) Numerical methods for fractional diffusion. Comput. Visual Sci., 19, 19-46.
  • [18] BREZIS, H. (1973) Op´erateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Stud. 5, North-Holland, Amsterdam.
  • [19] CAHN, J. W. and HILLIARD, J. E. (1958) Free energy of a nonuniform system I. J. Chem. Phys. 2, 258-267.
  • [20] COLLI, P., FARSHBAF-SHAKER, M. H., GILARDI, G. and SPREKELS, J. (2015a) Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control Optim. 53, 2696-2721.
  • [21] COLLI, P., FARSHBAF-SHAKER, M. H., GILARDI, G. and SPREKELS, J. (2015b) Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 7, 41-66.
  • [22] COLLI, P., FARSHBAF-SHAKER, M. H., and SPREKELS, J. (2015) A deep quench approach to the optimal control of an Allen–Cahn equation with dynamic boundary conditions and double obstacles. Appl. Math. Optim. 71, 1-24.
  • [23] COLLI, P. and GILARDI, G. (2019) Well-posedness, regularity and asymptotic analyses for a fractional phase field system. Asympt. Anal., 114, 93–128.
  • [24] COLLI, P., GILARDI, G., ROCCA, E. and SPREKELS, J. (2017) Optimal distributed control of a diffuse interface model of tumor growth. Nonlinearity 30, 2518-2546.
  • [25] COLLI, P., GILARDI, G. and SPREKELS, J. (2015) A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4, 311-325.
  • [26] COLLI, P., GILARDI, G. and SPREKELS, J. (2016a) Distributed optimal control of a nonstandard nonlocal phase field system. AIMS Mathematics 1, 225-260.
  • [27] COLLI, P., GILARDI, G. and SPREKELS, J. (2016b) A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 72, 195-225.
  • [28] COLLI, P., GILARDI, G. and SPREKELS, J. (2017) Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evol. Equ. Control Theory 6, 35-58.
  • [29] COLLI, P., GILARDI, G. and SPREKELS, J. (2018a) On a Cahn–Hilliard system with convection and dynamic boundary conditions. Ann. Mat. Pura Appl. (4) 197, 1445-1475.
  • [30] COLLI, P., GILARDI, G. and SPREKELS, J. (2018b) Optimal velocity control of a viscous Cahn–Hilliard system with convection and dynamic boundary conditions. SIAM J. Control Optim. 56, 1665-1691.
  • [31] COLLI, P., GILARDI, G. and SPREKELS, J. (2018c) Optimal distributed control of a generalized fractional Cahn–Hilliard system. Appl. Math. Optim., https://doi.org/10.1007/s00245-018-9540-7.
  • [32] COLLI, P., GILARDI, G. and SPREKELS, J. (2018d) Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double-obstacle potentials. To appear in: Discrete Cont. Dyn. Syst. Ser. S, see also preprint arXiv:1812.01675 [math.AP], 1-32.
  • [33] COLLI, P., GILARDI, G. and SPREKELS, J. (2019a) Well-posedness and regularity for a generalized fractional Cahn–Hilliard system. Rend. Lincei Mat. Appl., 30, 437–478.
  • [34] COLLI, P., GILARDI, G. and SPREKELS, J. (2019b) Optimal velocity control of a convective Cahn–Hilliard system with double obstacles and dynamic boundary conditions: a ‘deep quench’ approach. J. Convex Anal. 26, 485-514.
  • [35] COLLI, P. and SPREKELS, J. (2018) Optimal boundary control of a nonstandard Cahn–Hilliard system with dynamic boundary condition and double obstacle inclusions. In: P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (eds.), Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series 22, 151-182, Springer, Cham.
  • [36] DUAN, N. and ZHAO, X. (2015) Optimal control for the multi-dimensional viscous Cahn–Hilliard equation. Electron. J. Differential Equations, Paper No. 165, 13 pp.
  • [37] ELLIOTT, C. M. and ZHENG, S. (1986) On the Cahn–Hilliard equation. Arch. Rat. Mech. Anal. 96, 339-357.
  • [38] FRIGERI, S., GAL, C. G. and GRASSELLI, M. (2016) On nonlocal Cahn– Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26, 847-893.
  • [39] FRIGERI, S., GAL, C. G., GRASSELLI, M. and SPREKELS, J. (2019) Twodimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with variable viscosity, degenerate mobility and singular potential. Nonlinearity 32, 678-727.
  • [40] FRIGERI, S., GRASSELLI, M. and SPREKELS, J. (2018) Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential. Appl. Math. Optim., https://doi.org/10.1007/s00245-018-9524-7.
  • [41] FRIGERI, S., ROCCA, E. and SPREKELS, J. (2016) Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in two dimensions. SIAM J. Control Optim. 54, 221-250.
  • [42] FUKAO, T. and YAMAZAKI, N. (2018) A boundary control problem for the equation and dynamic boundary condition of Cahn–Hilliard type. In: P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (eds.), Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series 22, 255-280, Springer, Cham.
  • [43] GAL, C. G. (2017a) On the strong-to-strong interaction case for doubly nonlocal Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 37, 131-167.
  • [44] GAL, C. G. (2017b) Non-local Cahn–Hilliard equations with fractional dynamic boundary conditions. European J. Appl. Math. 28, 736-788.
  • [45] GAL, C. G. (2018) Doubly nonlocal Cahn–Hilliard equations. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 35, 357-392.
  • [46] GELDHAUSER, C. and VALDINOCI, E. (2018) Optimizing the fractional power in a model with stochastic PDE constraints. Adv. Nonlinear Stud. 18, 649-669.
  • [47] GILARDI, G., MIRANVILLE, A. and SCHIMPERNA, G. (2009) On the Cahn–Hilliard equation with irregular potentials and dynamic Bondary conditions. Commun. Pure Appl. Anal. 8, 881-912.
  • [48] GILARDI, G. and SPREKELS, J. (2019) Asymptotic limits and optimal control for the Cahn–Hilliard system with convection and dynamic boundary conditions. Nonlinear Anal. 178, 1-31.
  • [49] HEIDA, M. (2015) Existence of solutions for two types of generalized versions of the Cahn–Hilliard equations. Appl. Math. 60, 51-90.
  • [50] HINTERMULLER, M., HINZE, M., KAHLE, C. and KEIL, T. (2018) A goaloriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn–Hilliard–Navier–Stokes system. Optimization and Engineering, 19, 629-662.
  • [51] HINTERMULLER, M., KEIL, T. and WEGNER, D. (2018) Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system with non-matched fluid densities. SIAM J. Control Optim. 55, 1954-1989.
  • [52] HINTERMULLER, M. and WEGNER, D. (2012) Distributed optimal control of the Cahn–Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50, 388-418.
  • [53] HINTERMULLER, M. and WEGNER, D. (2014) Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system. SIAM J. Control Optim. 52, 747-772.
  • [54] HINTERMULLER, M. and WEGNER, D. (2017) Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies. Topological Optimization and Optimal Transport. Radon Series on Computational and Applied Mathematics 17, 40-63.
  • [55] LIONS, J.L. (1961) ´Equations Diff´erentielles Op´erationnelles et Probl`emes aux Limites. Grundlehren, 111, Springer-Verlag, Berlin.
  • [56] MIRANVILLE, A. and ZELIK, S. (2004) Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545-582.
  • [57] ROCCA, E. and SPREKELS, J. (2015) Optimal distributed control of a nonlocal convective Cahn–Hilliard equation by the velocity in three dimensions. SIAM J. Control Optim. 53, 1654-1680.
  • [58] SIMON, J. (1987) Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) 146, 65-96.
  • [59] SPREKELS, J. and VALDINOCI, E. (2017) A new class of identification problems: optimizing the fractional order in a nonlocal evolution equation. SIAM J. Control Optim. 55, 70-93.
  • [60] TACHIM MEDJO, T. (2015) Optimal control of a Cahn–Hilliard–Navier– Stokes model with state constraints. J. Convex Anal. 22, 1135-1172.
  • [61] WANG, Q.-F. and NAKAGIRI, S.-i. (2000) Weak solutions of Cahn–Hilliard equations having forcing terms and optimal control problems. Mathematical models in functional equations (Japanese), Surikaisekikenkyusho Kokyuroku 1128, 172–180, Kyoto.
  • [62] ZHAO, X. P. and LIU, C. C. (2013) Optimal control of the convective Cahn– Hilliard equation. Appl. Anal. 92, 1028-1045.
  • [63] ZHAO, X. P. and LIU, C. C. (2014), Optimal control of the convective Cahn– Hilliard equation in 2D case. Appl. Math. Optim. 70, 61-82.
  • [64] ZHENG, J. (2015) Time optimal controls of the Cahn–Hilliard equation with internal control. Optimal Control Appl. Methods 36, 566-582.
  • [65] ZHENG, J. and WANG, Y. (2015) Optimal control problem for Cahn–Hilliard equations with state constraint. J. Dyn. Control Syst. 21, 257-272.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0b1dea9-7649-4c51-965c-cae25b4c94ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.