PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanoaluminium: Is There any Relationship between Particle Size, Non-isothermal Oxidation Data and Ballistics?

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article focuses on data analyses and comparisons for aluminium nanopowders (or nanoaluminium, nAl) reactions under slow (0.5-20.0 K/min, using DTA/DSC/TGA) and fast (>10000 K/min, combustion in solid propellant formulations) non-isothermal oxidation. Particle sizes were defined through the BET method. Active Al content was related with the averaged reactivity parameters, taken from published DTA/DSC/TGA data. The specific oxidation onset temperature for nAl was poorly correlated with the BET particle size under the conditions investigated. Furthermore, the BET particle size exhibited no correlation with the observed ballistic response (burning rate) at 3.0 MPa. A logarithmic correlation y = 17.484 ln(x) – 5813, with R² = 0.73, was found between nAl particle size and its aluminium content. A calibration equation for the oxidation onset temperature as a function of nAl particle size was determined as y = −0.0071x2 + 3.3173x + 479.32, with R² = 0.75. Specific features of the nAl (metallic aluminum content in nAl and the oxidation onset temperature) can be predicted based on the measured powder parameters (such as BET particle size).
Słowa kluczowe
Rocznik
Strony
501--519
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
  • Tomsk Polytechnic University, Lenin Pr. 30, 634050 Tomsk, Russia
autor
  • Nürnberg University of Technology Georg-Simon-Ohm, Wassertorstr. 10, 90489 Nuernberg, Germany
Bibliografia
  • [1] Kubota, N. Propellants and Explosives: Thermochemical Aspects of Combustion. Wiley-VCH, Weinheim, Germany 2002.
  • [2] Kuo, K. K.; Summerfield, M. Fundamentals of Solid Propellant Combustion. AIAA Progress in Aeronautics and Astronautics. Vol. 90, AIAA, USA, 1984.
  • [3] DeLuca, L. T.; Price, E. W.; Summerfield, M. Nonsteady Burning and Combustion Stability of Solid Propellants. AIAA Progress in Aeronautics and Astronautics, Vol. 90, AIAA, USA 1992.
  • [4] Price, E. W. Combustion of Aluminum in Solid Propellant Flames. AGARD PEP 53rd Meeting on Solid Rocket Motor Technology, Paris, France 1979, Paper 14.
  • [5] DeLuca, L. T.; Galfetti, L.; Colombo, G.; Maggi, F.; Bandera, A.; Babuk, V. A.; Sindistkii, V. P. Microstructure Effects in Aluminized Solid Rocket Propellants. J. Propul. Power 2010, 26: 724-732.
  • [6] Babuk, V. A.; Vasilyev, V. A.; Malakhov, M. S. Condensed Combustion Products at the Burning Surface of Aluminized Solid Propellant. J. Propul. Power 1999, 15: 783-793.
  • [7] Ivanov, G. V.; Tepper, F. ‘Activated’ Aluminum as a Stored Energy Source for Propellants. Int. J. Energ. Mater. Chem. Propul. 1997, 4: 636-645.
  • [8] Mench, M. M.; Kuo, K. K.; Yeh, C. L.; Lu, Y. C. Comparison of Thermal Behavior of Regular and Ultra-Fine Aluminum Powders ALEX Made from Plasma Explosion Process. Combust. Sci. Technol. 1998, 135: 269-292.
  • [9] Dokhan, A.; Price, E. W.; Sigman, R. K.; Seitzman, J. M. The Effects of Aluminum Particle Size on the Burning Rate and Residual Oxide in Aluminized Propellants. AIAA Paper No. 2001-3581, 2001.
  • [10] Dokhan, A.; Price, E. W.; Seitzman, J. M.; Sigman, R. K. The Effects of Bimodal Aluminum with Ultrafine Aluminum on the Burning Rates of Solid Propellants. Proc. Comb. Inst. 2002, 29: 2939-2946.
  • [11] DeLuca, L. T.; Galfetti, L.; Severini, F.; Meda, L.; Marra, G.; Vorozhtsov, A. B.; Sedoi, V. S; Babuk, V. A. Burning of Nano-Aluminized Composite Rocket Propellants. Combust., Explos. Shock Waves (Engl. Transl.) 2005, 41: 680-692.
  • [12] Galfetti, L.; DeLuca, L. T.; Severini, F.; Meda, L.; Marra, G. Pre- and Post-Burning Analysis of Nano-aluminized Solid Rocket Propellants. Aerosp. Sci. Technol. 2007, 11: 26-32.
  • [13] Jayaraman, K.; Anand, K. V.; Chakravarty, S. R.; Sarathi, R. Effect of Nanoaluminium in Plateau-Burning and Catalyzed Composite Solid Propellant Combustion. Combust. Flame 2009, 156: 1662-1673.
  • [14] DeLuca, L. T.; Galfetti, L.; Maggi, F.; Colombo, G.; Reina, A.; Dossi, S.; Consonni, D.; Brambilla, M. Innovative Metallized Formulations for Solid and Hybrid Rocket Propulsion. Chin. J. Energ. Mater. 2012, 20: 465-474.
  • [15] Hahma, A. Method of Improving the Burn-rate and Ignitability of Aluminium Fuel Particles and Aluminium Fuel So Modified. Patent WO/2004/048,295, 2004; patentscope.wipo.int/search/en/WO2004048295.
  • [16] Hahma, A.; Gany, A.; Palovuori, K. Combustion of Activated Aluminum. Combust. Flame 2006, 145: 464-480.
  • [17] Maggi, F.; Dossi, S.; Paravan, C.; DeLuca, L. T.; Liljedhal, M. Activated Aluminum Powders for Space Propulsion. Powder Technology 2015, 270: 46-52.
  • [18] Morokhov, I. D.; Trusov, L. I. Ultradispersed Metal Media. (in Russian) Atomizdat, Moscow 1977.
  • [19] Berner, M. K.; Zarko, V. E.; Talawar, M. B. Nanoparticles of Energetic Materials, Synthesis and Properties (Review). Combust., Explos. Shock Waves (Engl. Transl.) 2013, 49: 625-647.
  • [20] Storozhenko, P. A.; Guseinov, Sh. L.; Malashin, S. I. Nanodispersed Powders, Synthesis Methods and Practical Applications. Nanotechnologies (in Russian) 2009, 4: 262-274.
  • [21] Ivanov, Y. F.; Osmonoliev, M.; Sedoi, V. S.; Arkhipov, V. A.; Bondarchuk, S. S.; Vorozhtsov, A. B.; Korotkikh, A. G.; Kuznetsov, V. T. Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions. Propellants Explos. Pyrotech. 2003, 28: 319-333.
  • [22] Sarathi, R.; Sindhu, T. K.; Chakravarty, S. R. Generation of Nano-aluminum Powder Through Wire Explosion Process and its Characterization. Mater. Charact. 2007, 58: 148-155.
  • [23] Gromov, A. A.; Ilyin, A. P.; Foerter-Barth, U.; Teipel, U. Effect of the Passivating Coating Type, Particle Size, and Storage Time on Oxidation and Nitridation of Aluminum Powders. Combust., Explos. Shock Waves (Engl. Transl.) 2006, 42:177-184.
  • [24] Gromov, A. A.; Ilyin, A. P.; Förter-Barth, U.; Teipel, U. Characterization of Aluminum Powders, II. Aluminum Nanopowders Passivated by Non-Inert Coatings. Propellants Explos. Pyrotech. 2006, 31: 401-409.
  • [25] Kwon, Y. S.; Gromov, A. A.; Ilyin, A. P.; Rim, G. H. Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires. Appl. Surf. Sci. 2003, 211: 57-67.
  • [26] Kwon, Y. S.; Gromov, A. A.; Strokova, J. I. Passivation of the Surface of Aluminum Nanopowders by Protective Coatings of the Different Chemical Origin. Appl. Surf. Sci. 2007, 253: 5558-5564.
  • [27] Gromov, A.; Strokova, Y.; Ditts, A. Passivation Films on Particles of Electroexplosion Aluminum Nanopowders, a Review. Russ. J. Chem. Phys. B 2010, 4: 156-169.
  • [28] Guo, L.; Song, W.; Hu, M.; Xie, C.; Chen, X. Preparation and Reactivity of Aluminum Nanopowders Coated by Hydroxyl-Terminated Polybutadiene HTPB. Appl. Surf. Sci. 2008, 254: 2413-2417.
  • [29] Reina, A. Nano-metal Fuels for Hybrid and Solid Propulsion. PhD Dissertation, Politecnico di Milano, Department of Aerospace Science and Technology, 2013.
  • [30] Sossi, A.; Duranti, E.; Paravan, C.; DeLuca, L. T.; Vorozhtsov, A. B.; Gromov, A. A.; Pautova, Y. I.; Lerner, M. I.; Rodkevich, N. G. Nonisothermal Oxidation of Aluminum Nanopowders Coated by Hydrocarbons and Fluorohydrocarbons. Appl. Surface Sci. 2013, 271: 337-343.
  • [31] Cliff, M.; Tepper, F.; Lisetsky, V. Ageing Characteristics of ALEXTM Nanosized Aluminum. AIAA Paper 2001-3287, 2001.
  • [32] Cerri, S.; Bohn, M. A.; Menke, K.; Galfetti, L. Ageing Behavior of HTPB-based Rocket Propellant Formulations. Cent. Eur. J. Energ. Mater. 2006, 6: 149-165.
  • [33] Ivanov, G. V.; Tepper. F. ‘Activated’ Aluminum as a Stored Energy Source for Propellants. (Kuo, K. K. et al., Eds.) Challenges in Propellants and Combustion 100 Years after Nobel, Begell House, New York 1997, pp. 636-645.
  • [34] Il’in, A. P.; Gromov, A. A.; Yablunovskii, G. V. Reactivity of Aluminum Powders. Combust., Explos. Shock Waves (Engl. Transl.) 2001, 37: 418-422.
  • [35] Metal Nanopowders, Production, Characterization, and Energetic Applications. (Gromov, A.; Teipel, U., Eds.), Wiley VCH, 2014, p. 430.
  • [36] Ilyin, A. P.; Gromov, A. A.; An, V.; Faubert, F.; de Izarra, C.; Espagnacq, A.; Brunet, L. Characterization of Aluminum Powders I. Parameters of Reactivity of Aluminum Powders. Propellants Explos. Pyrotech. 2002, 27: 361-364.
  • [37] Ismail, I. M. K.; Hawkins, T. W. Evaluation of Electro-exploded Aluminum ALEX for Rocket Propulsion. CPIA Publication 1996, 650 H: 25-39.
  • [38] Jones, D. E. G.; Brousseau, P.; Fouchard, R. C.; Turcotte, A. M.; Kwok, Q. S. M. Thermal Characterization of Passivated Nanometer Size Aluminium Powders. J. Therm. Anal. Calorim. 2000, 61: 805-818.
  • [39] Kwok, Q. S. M.; Fouchard, R. C.; Turcotte, A. M.; Lightfoot, P. D.; Bowes, R.; Jones, D. E. G. Characterization of Aluminum Nanonopowders Compositions. Propellants Explos. Pyrotech. 2002, 27: 229-240.
  • [40] Jones, D. E. G.; Turcotte, R.; Fouchard, R. C.; Kwok, Q. S. M; Turcotte, A. M.; Abdel-Qader, Z. Hazard Characterization of Aluminum Nanopowder Compositions. Propellants Explos. Pyrotech. 2003, 28: 120-131.
  • [41] Kwok, Q. S. M.; Badeen, C.; Armstrong, K.; Turcotte, R.; Jones, D. E. G; Gertsman, V. Y. Hazard Characterization of Uncoated and Coated Aluminium Nanopowder Compositions. J. Propul. Power 2007, 23: 659-668.
  • [42] Malikova, E.; Pautova, J.; Gromov, A.; Monogarov, K.; Larionov, K.; Teipel, U. On the Mechanism of Zirconium Nitride Formation by Zirconium, Zirconia and Yttria Burning in Air. J. Solid. State Chem. 2015, 230: 199-208.
  • [43] Popenko, E. M.; Il’in, A. P.; Gromov, A. M.; Kondratyuk, S. K.; Surgin, V. A.; Gromov, A. A. Combustion of Mixtures of Commercial Aluminum Powders and Ultrafine Aluminum Powders and Aluminum Oxide in Air. Combust., Explos. Shock Waves (Engl. Transl.) 2002, 38: 157-162.
  • [44] Eisenreich, N.; Fietzek, H.; Juez-Lorenzo, M.; Kolarik, V.; Koleczko, A.; Weiser, W. On the Mechanism of Low Temperature Oxidation for Aluminum Particles Down to the Nano-Scale. Propellants Explos. Pyrotech. 2004, 29: 137-145.
  • [45] Chen, L.; Song, W. L.; Lv, J.; Chen, X.; Xie, C. Research on the Methods to Determine Metallic Aluminum Content in Aluminum Nanoparticles. Mater. Chem. Phys. 2010, 120: 670-675.
  • [46] Rufino, B.; Boulc’h, F.; Coulet, M. V.; Lacroix, G.; Denoyel, R. Influence of Particle Size on Thermal Properties of Aluminum Powder. Acta Mater. 2007, 55: 2815-2827.
  • [47] Trunov, M. A.; Schoenitz, M.; Zhu, X.; Dreizin, E. L. Effect of Polymorphic Phase Transformations in Al2O3 Film on Oxidation Kinetics of Aluminum Powders. Combust. Flame. 2005, 140: 310-318.
  • [48] Levin, I.; Brandon, D. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 1998, 81(8): 1995-2012.
  • [49] Brewer, L.; Searcy, A. W. The Gaseous Species of the Al-Al2O3 System. J. Am. Chem. Soc. 1951, 73: 5308-5314.
  • [50] Zeldovich, Y. B., Leipunsky, O. I., Librovich, V. B. Theory of Non-Stationary Combustion of Powders. Nauka, Moscow 1975.
  • [51] Gromov, A. A.; Ilyin, A. P. Properties of Superfine Aluminum Powder Stabilized by Aluminum Diboride. Combust., Explos. Shock Waves (Engl. Transl.) 2002, 38: 128-139.
  • [52] Gromov, A. A.; Förter-Barth, U.; Teipel, U. Aluminum Nanopowders Produced by Electrical Explosion of Wires and Passivated by Non-inert Coatings, Characterisation and Reactivity with Air and Water. Powder Technol. 2006, 164:111-115.
  • [53] Gromov, A. A.; Strokova, Y.; Kabardin, A.; Vorozhtsov, A. B.; Teipel, U Experimental Study of the Effect of Metal Nanopowders on the Decomposition of HMX, AP and AN. Propellants Explos. Pyrotech. 2009, 34: 506-512.
  • [54] Kwon, Y. S.; Moon, J. S.; Ilyin, A. P.; Gromov, A. A.; Popenko, E. M. Estimation of the Reactivity of Aluminum Superfine Powders for Energetic Applications. Comb. Sci. Tech. 2004, 176: 277-288.
  • [55] Kwon, Y. S.; Gromov, A. A.; Ilyin, A. P. Reactivity of Superfine Aluminum Powders Stabilized by Aluminum Diboride. Combust. Flame 2002, 131: 349-352.
  • [56] Korshunov, A V. Influence of Dispersion Aluminum Powders on the Regularities of Their Interaction with Nitrogen. Rus. J. Phys. Chem. A 2011, 85: 1202-1210.
  • [57] Nitride Ceramics – Combustion Synthesis, Properties, and Applications. (Gromov, A.; Chukhlomina, L., Eds.), Wiley VCH, 2014, p. 360; ISBN 978-3-527-33755-2.
  • [58] Conti, A. Steady Burning and Ignition Properties of Aluminized Solid Rocket Propellants. MSc Thesis. Politecnico di Milano, Dept. of Aerospace Sciences and Technologies, 2007.
  • [59] Sun, J.; Pantoya, M.; Simon, S. L. Dependence of Size and Size Distribution on Reactivity of Aluminum Nanoparticles in Reactions with Oxygen and MoO3. Thermochim. Acta 2006, 444: 117-127.
  • [60] Lyashko, A. P.; Medvinskii, A. A.; Saveliev, G. G.; Iliin, A. P.; Yavorovskii, N. A. Interaction of Super-finely Dispersed Al Powders with Water. React. Kinet. Catal. Lett. 1988, 37: 139-144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0abe9ed-7d4a-4a0b-85b3-ee2c91e4facd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.