Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Two fundamental challenges in investigation of nonlinear behavior of cantilever beam are the reliability of developed theory in facing with the reality and selecting the proper assumptions for solving the theory-provided equation. In this study, one of the most applicable theory and assumption for analyzing the nonlinear behavior of the cantilever beam is examined analytically and experimentally. The theory is concerned with the slender inextensible cantilever beam with large deformation nonlinearity, and the assumption is using the first-mode discretization in dealing with the partial differential equation provided by the theory. In the analytical study, firstly the equation of motion is derived based on the theory of large deformable inextensible beam. Then, the partial differential equation of motion is discretized using the Galerkin method via the assumption of the first mode. An exact solution to the obtained nonlinear ordinary differential equation is developed, because the available semi analytical and approximated methods, due to their limitations, are not always sufficiently reliable. Finally, an experiment set-up is developed to measure the nonlinear frequency of oscillations of an aluminum beam within a domain of initial displacement. The results show that the proposed analytical method has excellent convergence with experimental data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
65--82
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of Aerospace Engineering, Space Research Institute, Malek-Ashtar University of Technology, Tehran, Iran
autor
- Department of Aerospace Engineering, Space Research Institute, Malek-Ashtar University of Technology, Tehran, Iran
autor
- Department of New Sciences and Technologies, University of Tehran, Tehran, Iran
Bibliografia
- [1] O.Aghababaei, H.Nahvi, and S. Ziaei-Rad. Dynamic bifurcation and sensitivity analysis of non-linear non-planar vibrations of geometrically imperfect cantilevered beams. International Journal of Non-Linear Mechanics, 45(2):121–139, 2010. doi: 10.1016/j.ijnonlinmec.2009.10.002.
- [2] P. Malatkar. Nonlinear Vibrations of Cantilever Beams and Plates, Dissertation, Virginia Tech, 2003.
- [3] M.R.M. Crespo da Silva and C.C. Glynn. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. Journal of Structural Mechanics, 6(4):437–448, 1978. doi: 10.1080/03601217808907348.
- [4] T.J. Anderson, B. Balachandran. and A.H. Nayfeh. Observations of nonlinear interactions in a flexible cantilever beam. In 33rd Structures, Structural Dynamics and Materials Conference, Dallas, TX, USA, 1992.
- [5] T.J. Anderson, B. Balachandran, and A.H. Nayfeh. Nonlinear resonances in a flexible cantilever beam. Journal of Vibration and Acoustics, 16(4):480-484, 1994. doi: 10.1115/1.2930452.
- [6] T.J. Anderson, A.H. Nayfeh, and B. Balachandran. Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. Journal of Vibration and Acoustics, 118(1):21–27, 1996. doi: 10.1115/1.2889630.
- [7] T.J. Anderson, A.H. Nayfeh, and B. Balachandran. Coupling between high-frequency modes and a low-frequency mode: Theory and experiment. Nonlinear Dynamics, 11(1):17–36, 1996. doi: 10.1007/BF00045049.
- [8] M.R.M. Crespo da Silva and C.C. Glynn. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. forced motions. Journal of Structural Mechanics, 6(4):449–461, 1978. doi: 10.1080/03601217808907349.
- [9] W. Zhang. Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Chaos, Solitons & Fractals, 26(3):731–745, 2005. doi: 10.1016/j.chaos.2005.01.042.
- [10] M.Yaman. Direct and parametric excitation of a nonlinear cantilever beam of varying orientation with time-delay state feedback. Journal of Sound and Vibration, 324(3–5):892–902, 2009. doi: 10.1016/j.jsv.2009.02.010.
- [11] M. Belhaq, A. Bichri, J. Der Hogapian and J. Mahfoud. Effect of electromagnetic actuations on the dynamics of a harmonically excited cantilever beam. International Journal of Non-Linear Mechanics, 46(6):828–833, 2011. doi: 10.1016/j.ijnonlinmec.2011.03.001.
- [12] S.B. Shiki, V. Lopes, and S. da Silva. Identification of nonlinear structures using discrete-time Volterra series. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(3):523–532, 2014. doi: 10.1007/s40430-013-0088-9.
- [13] A. Motallebi, S. Irani, and S. Sazesh. Analysis on jump and bifurcation phenomena in the forced vibration of nonlinear cantilever beam using HBM. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(2):515–524, 2016. doi: 10.1007/s40430-015-0352-2.
- [14] M.R.M. Crespo da Silva. Nonlinear resonances in a column subjected to a constant end force. Journal of Applied Mechanics, 47(2):409–414, 1980. doi: 10.1115/1.3153678.
- [15] O. Bauchau and C. Bottasso. Space-time perturbation modes for non-linear dynamic analysis of beams. Nonlinear Dynamics, 6(1):21–35, 1994. doi: 10.1007/BF00045430.
- [16] H.N. Arafat. Nonlinear response of cantilever beams. Dissertation, Virginia Polytechnic Institute and State University, 1999.
- [17] M.I. Qaisi. Application of the harmonic balance principle to the nonlinear free vibration of beams. Applied Acoustics, 40(2):141–151, 1993. doi: 10.1016/0003-682X(93)90087-M.
- [18] M.N. Hamdan, A.A. Al-Qaisia, and B.O. Al-Bedoor. Comparison of analytical techniques for nonlinear vibrations of a parametrically excited cantilever. International Journal of Mechanical Sciences, 43(6):1521–1542, 2001. doi: 10.1016/S0020-7403(00)00067-9.
- [19] T.A. Doughty, P. Davies, and A.K. Bajaj. A comparison of three techniques using steady state data to identify non-linear modal behavior of an externally excited cantilever beam. Journal of Sound and Vibration, 249(4):785–813, 2002. doi: 10.1006/jsvi.2001.3912.
- [20] A.A. Al-Qaisia and M.N. Hamdan. Bifurcations and chaos of an immersed cantilever beam in a fluid and carrying an intermediate mass. Journal of Sound and Vibration, 253(4):859–888, 2002. doi: 10.1006/jsvi.2001.4072.
- [21] Y.Z. Chen and X.Y. Lin. Several numerical solution techniques for nonlinear eardrumtype oscillations. Journal of Sound and Vibration, 296(4-5):1059–1067, 2006. doi: 10.1016/j.jsv.2006.03.019.
- [22] Y.Z. Chen. Solution of the duffing equation by using target function method. Journal of Sound and Vibration, 256(3):573–578, 2002. doi: 10.1006/jsvi.2001.4221.
- [23] J.-H. He. Approximate solution of nonlinear differential equations with convolution product nonlinearities. Computer Methods in Applied Mechanics and Engineering, 167(1-2):69–73, 1998. doi: 10.1016/S0045-7825(98)00109-1.
- [24] R.E. Mickens. Comments on the method of harmonic balance. Journal of Sound and Vibration, 94(3):456–460, 1984. doi: 10.1016/S0022-460X(84)80025-5.
- [25] I. Kozinsky, H.W.C. Postma, I. Bargatin, and M.L. Roukes. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Applied Physics Letters, 88(25):1–4, 2006. doi: 10.1063/1.2209211.
- [26] S. Hornstein and O. Gottlieb. Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dynamics, 54(1–2):93–122, 2008. doi: 10.1007/s11071-008-9335-5.
- [27] L.D. Zavodney and A.H. Nayfeh. The non-linear response of a slender beam carrying a lumped mass to a principal parametric excitation: Theory and experiment. International Journal of Non-Linear Mechanics, 24(2):105–125, 1989. doi: 10.1016/0020-7462(89)90003-6.
- [28] N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz. Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications. Journal of Micromechanics and Microengineering, 20(4):1–9, 2010. doi: 10.1088/0960-1317/20/4/045023.
- [29] S.N. Mahmoodi and N. Jalili. Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. International Journal of Non-Linear Mechanics, 42(4):577–587, 2007. doi: 10.1016/j.ijnonlinmec.2007.01.019.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0abe887-8235-477b-80d4-d8266de16d5c