PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Mechanistic Explanation of the Shape of the Universal Curve of Earthquake Recurrence Time Distributions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper outlines an idea for an explanation of a mechanism underlying the shape of the universal curve of the Earthquake Recurrence Time Distributions. The proposed simple stochastic cellular automaton model is reproducing the gamma distribution fit with the proper value of parameter γ characterizing the Earth’s seismicity and also imitates a deviation from the fit at short interevent times, as observed in real data. Thus the model suggests an explanation of the universal pattern of rescaled Earthquake Recurrence Time Distributions in terms of combinatorial rules for accumulation and abrupt release of seismic energy.
Czasopismo
Rocznik
Strony
1205--1215
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
Bibliografia
  • [1] Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88, 17, 178501, DOI: 10.1103/PhysRevLett.88.178501.
  • [2] Białecki, M. (2012), Motzkin numbers out of Random Domino Automaton, Phys. Lett. A 376, 45, 3098-3100, DOI: 10.1016/j.physleta.2012.09.022.
  • [3] Białecki, M. (2013), From statistics of avalanches to microscopic dynamics parameters in a toy model of earthquakes, Acta Geophys., 61, 6, 1677-1689, DOI: 10.2478/s11600-013-0111-7.
  • [4] Białecki, M. (2015), Properties of a finite stochastic cellular automaton toy model of earthquakes, Acta Geophys. 63, 4, 923-956, DOI: 10.1515/acgeo-2015-0030.
  • [5] Białecki, M., and Z. Czechowski (2010), On a simple stochastic cellular automaton with avalanches: simulation and analytical results. In:V. De Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: From Fracture to Earthquake Processes, GeoPlanet - Earth and Planetary Sciences, Springer, Berlin Heidelberg, 63-75, DOI: 10.1007/978-3-642-12300-9_5.
  • [6] Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: exponential and inverse-power distributions out of Random Domino Automaton, J. Phys. Soc. Jpn. 82, 1, 014003, DOI: 10.7566/JPSJ.82.014003.
  • [7] Białecki, M., and Z. Czechowski (2014), Random Domino Automaton: Modeling macroscopic properties by means of microscopic rules. In: R. Bialik, M. Majdanski, and M. Moskalik (eds.), Achievements, History and Challenges in Geophysics, GeoPlanet: Earth and Planetary Sciences, Springer Intern. Publ., Cham, 223-241, DOI: 10.1007/ 978-3-319-07599-0_13.
  • [8] Corral, A. (2004), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 10, 108501, DOI: 10.1103/Phys- RevLett.92.108501.
  • [9] Corral, A. (2007), Statistical features of earthquake temporal occurrence. In: P. Bhattacharyya and B.K. Chkrabarti (eds.), Modelling Critical and Catastrophic Phenomena in Geoscience, Lecture Notes in Physics, Vol. 705, Springer, Berlin Heidelberg, 191-221, DOI: 10.1007/3-540-35375-5_8.
  • [10] Czechowski, Z., and M. Białecki (2012a), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor. 45, 15, 155101, DOI: 10.1088/1751-8113/45/15/155101.
  • [11] Czechowski, Z., and M. Białecki (2012b), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60, 3, 846-857, DOI: 10.2478/s11600-012-0021-0.
  • [12] Drossel, B., and F. Schwabl (1992), Self-organized critical forest-fire model, Phys. Rev. Lett. 69, 11, 1629-1632, DOI: 10.1103/PhysRevLett.69.1629.
  • [13] Marekova, E. (2012), Testing a scaling law for the earthquake recurrence time distributions, Acta Geophys. 60, 3, 858-873, DOI: 10.2478/s11600-012-0007-y.
  • [14] Matcharashvili, T., T. Chelidze, and N. Zhukova (2015), Assessment of the relative ratio of correlated and uncorrelated waiting times in the Soutern California earthquakes catalogue, Physica A 433, 291-303, DOI: 10.1016/j.physa.2015.03.060.
  • [15] Saichev, A., and D. Sornette (2006), “Universal” distribution of inter-earthquake times explained, Phys. Rev. Lett. 97, 7, 078501, DOI: 10.1103/PhysRevLett.97.078501.
  • [16] Saichev, A., and D. Sornette (2013), Fertility heterogeneity as a mechanism for power law distributions of recurrence times, Phys. Rev. E 87, 2, 022815, DOI: 10.1103 /PhysRevE.87.022815.
  • [17] Tejedor, A., J.B. Gomez, and A.F. Pacheco (2009), Earthquake size-frequency statistics in a forest-fire model of individual faults, Phys. Rev. E 79, 4, 046102, DOI: 10.1103/PhysRevE.79.046102.
  • [18] Tejedor, A., J.B. Gomez, and A.F. Pacheco (2010), Hierarchical model for disturbed seismicity, Phys. Rev. E 82, 1, 016118, DOI: 10.1103/PhysRevE.82.016118.
  • [19] Weatherley, D. (2006), Recurrence interval statistics of cellular automaton seismicity models, Pure Appl. Geophys. 163, 9, 1933-1947, DOI: 10.1007/s00024-006-0105-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0a959c7-eae2-452f-949a-bd8a22d0953c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.