PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Alunogen from the sulfate efflorescence of the Stone Town Nature Reserve in Ciężkowice (the Outer Carpathian Mountains, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alunogen (Al2(SO4)3∙17H2O), a rare secondary mineral, has been found in the efflorescence on sandstones from the Stone Town Nature Reserve in Ciężkowice, southeastern Poland. This is probably the first find of this salt on such rocks in Poland. Alunogen forms in various geological environments, but mainly from the oxidation of pyrite and other metal sulfides in ore deposits and Al-rich Earth materials under low-pH conditions. Its crystallization at this particular site depends on a set of necessary physicochemical (pH, concentration), climatic (season, temperature, humidity), site-related (location and protection of efflorescence), and mineralogical (the presence of pyrite) conditions. This paper presents the mineralogical and geochemical characteristics of the alunogen from the Stone Town Nature Reserve (based on SEM-EDS, XRPD, EPMA and Raman spectroscopy methods) as well as of the efflorescence itself (based on XRPD and STA coupled with QMS and FTIR for the analysis of gas products). Crystals of alunogen take the shape of flakes, often with a hexagonal outline, clustered in aggregates forming a cellular network. Its calculated formula is (Al1.96Fe3+ 0.01)∑1.97(SO4)3∙17H2O (based on 12 O and 17 H2O). The unit-cell parameters refined for the triclinic space group P1 are: a = 7.423 (1) Å, b = 26.913 (5) Å, c = 6.056 (1) Å, α = 89.974 (23)°, β = 97.560 (25)°, γ = 91.910 (22)°. The Raman spectra (SO4) bands are: intensive 995 cm−1 (ν1); low-intensive 1069, 1093 and 1127 cm−1 (ν3); low-intensive 419 and 443; medium-intensive 470 cm−1 (ν2); and medium-intensive 616 cm−1 (ν4). Those at 530, 312 and at 338 cm−1 are assigned to water vibrations and those at 135, 156, 180 cm−1 to the lattice modes. Although the efflorescence contained an admixture of other minerals (pickeringite, gypsum and quartz), the predominant alunogen is almost chemically pure and the above parameters are consistent with the values reported in the literature for alunogen from different locations and of various origins.
Wydawca
Rocznik
Strony
139--156
Opis fizyczny
Bibliogr. [58] poz., rys., tab., wykr.
Twórcy
  • AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland
autor
  • AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland
Bibliografia
  • Adams P.M., Lynch D.K., Buckland K.N., Johnson P.D. & Tratt D.M., 2017. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California. Journal of Volcanology and Geothermal Research, 347, 15–43. https://doi.org/10.1016/j.jvolgeores.2017.08.010.
  • Alexandrowicz Z., 1970. Skałki piaskowcowe w okolicy Ciężkowic nad Białą [Sandstone rocks in the vicinity of Ciężkowice on the Biała River]. Ochrona Przyrody, 35, 281–335.
  • Alexandrowicz Z., 1978. Skałki piaskowcowe zachodnich Karpat fliszowych [Sandstone tors of the Western Flysch Carpathians]. Prace Geologiczne – Polska Akademia Nauk. Oddział w Krakowie. Komisja Nauk Geologicznych, 113, Zakład Narodowy im. Ossolińskich – Wydawnictwo PAN, Wrocław.
  • Alexandrowicz Z., 1987. Przyroda nieożywiona Czarnorzeckiego Parku Krajobrazowego [Inanimate nature in the Czarnorzecki Landscape Park]. Ochrona Przyrody, 45, 263–293.
  • Alexandrowicz Z., 2008. Sandstone rocky forms in Polish Carpathians attractive for education and tourism. Przegląd Geologiczny, 56(8/1), 680–687.
  • Alexandrowicz Z. & Marszałek M., 2019. Efflorescences on weathered sandstone tors in the Stone Town Nature Reserve in Ciężkowice the Outer Carpathians, Poland – their geochemical and geomorphological controls. Environmental Science and Pollution Research, 26(36), 37254–37274. https://doi.org/10.1007/s11356-019-06778-4.
  • Alexandrowicz Z., Marszałek M. & Rzepa G., 2014. Distribution of secondary minerals in crusts developed on sandstone exposures. Earth Surface Processes & Landforms, 39(3), 320–335. https://doi.org/10.1002/esp.3449.
  • Alpers C.N., Blowes D.W., Nordstrom D.K. & Jambor J.L., 1994. Secondary minerals and acid mine‐water chemistry. [in:] Jambor J. & Blowes D. (eds.), The Environmental Geochemistry of Sulfide Mine-wastes: Short Course Handbook, Mineralogical Association of Canada, Waterloo, ON, Canada, 247–270.
  • Audra P. & Hobléa F., 2007. The first cave occurrence of jurbanite [Al(OH SO4)∙5H2O], associated with alunogen [Al2(SO4)3∙17H2O] and tschermigite [NH4Al(SO4)2∙ ⋅12H2O]: thermal-sulfidic Serpents Cave, France. Journal of Cave and Karst Studies, 69(2), 243–249.
  • Balcerzak E., Dobrzyński D. & Parafiniuk J., 1992. Wpływ przeobrażeń mineralnych na skład chemiczny wód w strefie wietrzenia łupków pirytonośnych w Wieściszowicach. Annales Societatis Geologorum Poloniae, 62, 75–93.
  • Biagioni C., Mauro D. & Pasero M., 2020. Sulfates from the pyrite ore deposits of the Apuan Alps (Tuscany, Italy): A review. Minerals, 10(12), 1092. https://doi.org/10.3390/ min10121092.
  • Buzatu A., Dill G.H., Buzgar N., Damian G., Maftei A.E. & Apopei A.I., 2016. Efflorescent sulfates from Baia Sprie mining area (Romania) – Acid mine drainage and climatological approach. Science of the Total Environment, 542(Part A), 629–641. https://doi.org/10.1016/j.scitotenv. 2015.10.139.
  • Buzykin O.G., Ivanov S.V., Ionin A.A., Kotkov A.A., & Kozlov A.Y., 2005. Spectroscopic detection of sulfur oxides in the aircraft wake. Journal of Russian Laser Research, 26(5), 402–426. https://doi.org/10.1007/s10946- 005-0043-z.
  • Chukanov N.V. & Chervonnyi A.D., 2016. Infrared Spectroscopy of Minerals and Related Compounds. Springer Mineralogy, Springer Cham.
  • Ciesielczuk J., Kruszewski Ł., Fabiańska M.J., Misz-Kennan M., Kowalski A. & Mysza B., 2014. Efflorescences and gas composition emitted from the burning coalwaste dump in Słupiec, Lower Silesian Coal Basin, Poland. [in:] Macek I. (ed.), Proceedings of the International Symposium CEMC 2014, Skalský Dvůr, Czech Republic, 23–26 April 2014, 26–27.
  • Cieszkowski M., Koszarski A., Leszczyński S., Michalik M., Radomski A. & Szulc J., 1991. Szczegółowa mapa geologiczna Polski 1:50 000. Arkusz Ciężkowice. Wydawnictwa Geologiczne, Warszawa.
  • Fang J.H. & Robinson P.D., 1976. Alunogen, Al2(H2O)12(SO4)3⋅ ⋅5H2O: its atomic arrangement and water content. American Mineralogist, 61(3–4), 311–317.
  • Földvári M., 2011. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice. Occasional Papers of the Geological Institute of Hungary, 213, Budapest, Hungary.
  • Frost R.L., Wain D., Martens W.N., Locke A.C., Martinez-Frias J. & Rull F., 2007. Thermal decomposition and X-ray diffraction of sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera, Spain. Thermochimica Acta, 460(1–2), 9–14. https://doi.org/10.1016/j.tca. 2007.05.011.
  • Gancy A.B., Rao J.M. & Wenner W.M., 1981. Dehydration behaviour of aluminium sulfate hydrates. Journal of the American Ceramic Society, 64(2), 119–123. https://doi. org/10.1111/j.1151-2916.1981.tb09588.x.
  • Garavelli A., Pinto D., Mitolo D. & Kolitsch U., 2021. Thermessaite-(NH4), (NH4)2AlF3(SO4), a new fumarole mineral from La Fossa crater at Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 85(5), 665–672. https://doi. org/10.1180/mgm.2021.69.
  • Gomes P., Valente T. Grande J.A. & Cordeiro M., 2017. Occurrence of sulphate efflorescences in São Domingos mine. Comunicações Geológicas, 104(1), 83–89.
  • Hall A.J., Fallick A.E., Perdikatsis V. & Photos-Jones E., 2003. A model for the origin of Al-rich efflorescences near fumaroles, Melos, Greece: enhanced weathering in a geothermal setting. Mineralogical Magazine, 67(2), 363–379. https://doi.org/10.1180/0026461036720102.
  • Hammarstrom J.M. & Smith K.S., 2002. Geochemical and mineralogical characterization of solids and their effects on waters in metal-mining environments. [in:] Seal R.R. II & Foley N.K. (eds.), Progress on Geoenvironmental Models for Selected Mineral Deposit Types, US Geological Survey Open-File Report 02-195, US Geological Survey, Reston, VA, USA, 8–54.
  • Hammarstrom J.M., Seal R.R. II, Meier A.L. & Kornfeld J.M., 2005. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chemical Geology, 215(1–4), 407–431. https://doi.org/10.1016/j.chemgeo.2004.06.053.
  • Jambor J.L., Nordstrom D.K. & Alpers C.N., 2000. Metal-sulfate salts from sulfide mineral oxidation. Reviews in Mineralogy & Geochemistry, 40(1), 303–350. https://doi. org/10.2138/rmg.2000.40.6.
  • Joeckel R.M., Ang Clement B.J & VanFleet Bates L.R., 2005. Sulfate mineral crusts, pyrite weathering, and acid rock drainage in the Dakota Formation and Graneros Shale (Cretaceous), Jefferson County, Nebraska. Chemical Geology, 215(1–4), 433–452. https://doi.org/10.1016/j.chemgeo.2004.06.044
  • Kahlenberg V., Braun D.E. & Orlova M., 2015. Investigations on alunogen under Mars relevant temperature conditions: an example for a single-crystal-to-single-crystal phase transition. American Mineralogist, 100(11–12), 2548–2559. https://doi.org/10.2138/am-2015-5342.
  • Kahlenberg V., Braun D.E., Krüger H., Schmidmair D. & Orlova M., 2017. Temperature- and moisture-dependent studies on alunogen and the crystal structure of meta-alunogen determined from laboratory powder diffraction data. Physics and Chemistry of Minerals, 44(2), 95–107. https://doi.org/10.1007/s00269-016-0840-7.
  • Košek F., Culka A., Žáček V., Laufek F., Škoda R. & Jehlička J., 2018. Native alunogen: A Raman spectroscopic study of a well-described specimen. Journal of Molecular Structure, 1157, 191–200. https://doi.org/10.1016/j.molstruc.2017.12.021.
  • Košek F., Culka A., Rousaki A., Vandenabeele P. & Jehlička J., 2022. Raman spectroscopy of anhydrous and hydrated aluminum sulfates: Experience from burning coal heaps. Journal of Raman Spectroscopy, 53(11), 1959–1973. https://doi.org/10.1002/jrs.6420.
  • Kruszewski Ł., 2013. Supergene sulphate minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology, 105, 91–109. https://doi.org/10.1016/j.coal.2012.12.007.
  • Kruszewski Ł., 2019. Secondary sulphate minerals from Bhanine Valley coals (South Lebanon) – a crystallochemical and geochemical study. Geological Quarterly, 63(1), 65–87. https://doi.org/10.7306/gq.1450. Leszczyński S., 1981.
  • Piaskowce ciężkowickie jednostki śląskiej w Polskich Karpatach: studium sedymentacji głębokowodnej osadów gruboklastycznych [Ciężkowice Sandstones of the Silesian Unit in the Polish Carpathians: A study of coarse-clastic sedimentation in the deep-water]. Annales Societatis Geologorum Poloniae, 51(3–4), 435–502. https:// geojournals.pgi.gov.pl/asgp/article/view/11985/10463.
  • Leszczyński S., Dziadzio P.S. & Nemec W., 2015. Some current sedimentological controversies in the Polish Carpathian flysch. [in:] Haczewski G. (ed.), Proceedings of the Guidebook for Field Trips Accompanying 31st IAS Meeting of Sedimentology Held in Kraków, Kraków, Poland, 22–25 June, 2015, 247–287.
  • Locke A.J., Martens W.N. & Frost R.L., 2007. Thermal analysis of halotrichites. Thermochimica Acta, 459(1–2), 64–72. https://doi.org/10.1016/j.tca.2007.04.015.
  • Luo L., Wen H., Zheng R., Liu R., Li Y., Luo X. & You Y., 2019. Subaerial sulfate mineral formation related to acid aerosols at the Zhenzhu Spring, Tengchong, China. Mineralogical Magazine, 83(3), 381–392. https://doi. org/10.1180/mgm.2018.164.
  • Marszałek M., Gaweł A. & Włodek A., 2020. Pickeringite from the Stone Town Nature Reserve in Ciężkowice (the Outer Carpathians, Poland). Minerals, 10(2), 187. https:// doi.org/10.3390/min10020187.
  • Martin R., Rodgers K.A. & Browne P.R.L., 1999. The nature and significance of sulphate-rich aluminous efflorescences from the Te Kopia geothermal field, Taupo volcanic Zone, New Zealand. Mineralogical Magazine, 63(3), 413–419. https://doi.org/10.1180/002646199548501.
  • Menchetti S. & Sabelli C., 1974. Alunogen: its structure and twinning. Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 164–178. https://doi.org/10.1007/ BF01081029.
  • Munsell Color, 1998. Munsell Soil Color Charts. Munsell Color GretagMacbeth. New Windsor, New York. Naglik B. & Natkaniec-Nowak L., 2015. Pickeringite from the Pieprzowe Mts. (the Holy Cross Mts., Central Poland). Geology, Geophysics & Environment, 41(1), 114–115. https://doi.org/10.7494/geol.2015.41.1.114.
  • Naglik B., Heflik W. & Natkaniec-Nowak L., 2016a. Charakterystyka mineralogiczno-petrograficzna utworów klastycznych Gór Pieprzowych (Wyżyna Sandomierska) i produktów ich wietrzenia [Mineralogical and petrograhic characteristics of clastic rocks of the [!] Mts. (Sandomierz Upland) and their weathering cover]. Przegląd Geologiczny, 64(5), 338–343. https://geojournals.pgi.gov. pl/pg/article/view/27380/19098.
  • Naglik B., Natkaniec-Nowak L. & Heflik W., 2016b. Mineral assemblages as a record of the evolutionary history of the Pepper Mts. Shale Formation (the Holy Cross Mts.). Geology, Geophysics & Environment, 42(2), 161–173. https:// doi.org/10.7494/geol.2016.42.2.161.
  • Parafiniuk J., 1996. Sulfate minerals and their origin in the weathering zone of the pyrite-bearing schists at Wieściszowice (Rudawy Janowickie Mts, Western Sudetes). Acta Geologica Polonica, 46(3–4), 353–414.
  • Parafiniuk J. & Stępisiewicz M., 1999. Sulphate minerals forming of pyrite and marcasite specimens stored under room conditions. Mineralogia Polonica, 30(1), 59–71.
  • Přikryl R., Melounová L., Vařilová Z. & Weishauptová Z., 2007. Spatial relationships of salt distribution and related physical changes of underlying rocks on naturally weathered sandstone exposures (Bohemian Switzerland National Park, Czech Republic). Environmental Geology, 52, 409–420. https://doi.org/10.1007/s00254-006- 0589-2.
  • Quartieri S., Triscari M. & Viani A., 2000. Crystal structure of the hydrated sulphate pickeringite (MgAl2(SO4)4∙ ⋅22H2O): X-ray powder diffraction study. European Journal of Minealogy, 12(6), 1131–1138. https://doi.org/ 10.1127/ejm/12/6/1131.
  • Rodríguez A. & van Bergen M.J., 2017. Superficial alteration mineralogy in active volcanic systems: An example of Poás volcano, Costa Rica. Journal of Volcanology and Geothermal Research, 346, 54–80. https://doi. org/10.1016/j.jvolgeores.2017.04.006.
  • Rothman L.S., Gamache R.R., Tipping R.H., Rinsland C.P., Smith M.A.H., Benner D.C., Devi V.M. et al., 1992. The HITRAN molecular database: Editions of 1991 and 1992. Journal of Quantitative Spectroscopy and Radiative Transfer, 48, (5–6), 469–507. https://doi.org/10.1016/ 0022-4073(92)90115-K.
  • Stracher G.B., Prakash A., Schroeder P., McCormack J., Zhang X., Van Dijk P. & Blake D., 2005. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia. American Mineralogist, 90(11–12), 1729–1739. https://doi.org/10.2138/ am.2005.1671.
  • Szabo R., Popescu G.C., Dumitraş D.-G. & Ghinescu E., 2020. New occurrences of sulfate minerals in Jiul de Vest Upper Basin, South Carpathians, Romania. Carpathian Journal of Earth and Environmental Sciences, 15(2), 347–358. https://doi.org/10.26471/cjees/2020/015/135.
  • Vařilová Z., Přikryl R. & Cílek V., 2011. Pravčice Rock Arch (Bohemian Switzerland National Park, Czech Republic) deterioration due to natural and anthropogenic weathering, Environmental Earth Science, 63(7–8), 1861–1878. https://doi.org/10.1007/s12665-010-0881-z.
  • Wang A. & Zhou Y., 2014. Experimental comparison of the pathways and rates of the dehydration of Al-, Fe-, Mg- and Ca-sulfates under Mars relevant conditions. Icarus, 234, 162–173. https://doi.org/10.1016/j.icarus.2014.02.003.
  • Wieser T., 1949. Siarczanowe produkty wietrzenia na złożu dwusiarczku żelaza Gór Świętokrzyskich. Annales Societatis Geologorum Poloniae, 19(3), 445–477. Williams R.B.G. & Robinson D.A., 1998. Weathering of sandstone by alunogen and alum salts. Quarterly Journal of Engineering Geology, 31(4), 369–373. https://doi. org/10.1144/GSL.QJEG.1998.031.P4.10.
  • Žáček V., 1988. Zonal association of secondary minerals from burning dumps of coal mines near Kladno, Central Bohemia, Czechoslovakia. Acta Universitatis Carolinae, Geologica, 3, 315–341.
  • Žáček V. & Skála R., 2015. Mineralogy of burning-coal waste piles in collieries of the Czech Republic. [in:] Stracher G.B., Sokol E.V. & Prakash A. (eds.), Coal and Peat Fires: A Global Perspective, Volume 3: Case Studies – Coal Fires, Elsevier, Amsterdam, Boston, Heidelberg, London, 109–160.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0a8284e-5f88-4916-9970-a084b6345011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.