PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent Euler pole parameters and relative velocities of the Nubia–Eurasia and Nubia–South America plates estimated using GPS technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The convergence of the Nubian plate toward Eurasia and the spreading rate between the Nubian and South American plates are currently subjects of scientific debates. In this paper, we improve the estimation of Euler pole parameters and the recent relative velocities of the Nubian plate using Global Positioning System (GPS) velocities. These estimates are based on mathematical models and statistical tests for plate tectonic motion represented on a spherical surface. First, we derive the angular velocity and the precise coordinates of the Euler pole to describe the Nubian plate absolute motion expressed in the ITRF2014 geodetic system. This derivation is obtained by inverting the horizontal velocities of 202 GPS stations well distributed across the Nubian plate. Then, we use the same data to obtain the current relative velocities and parameters of the Euler pole characterizing the Nubia–Eurasia and Nubia–South America relative plate motion. A number of 21 and 29 GPS stations located on tectonically stable domains are used to fix the Eurasian and the South American plates, respectively. The results show Nubia–Eurasia relative velocities ranging from 1 to 7 mm/yr, with a direction of NW to WNW for the northern Nubian plate. The velocity in the southern part of this plate reveals a NNE to N direction. The inversion of these velocities allows the determination of the Euler pole parameters: the coordinates [formula] and the angular velocity [formula]. On the other hand, the estimated relative velocity of Nubia–South America is varying in the range of 15–30 mm/yr, with a NE to ENE direction and rotating around the pole [formula] with an angular velocity [formula]. The obtained research results demonstrate an improved precision compared to the existing studies. Furthermore, the use of the Algerian GPS velocities played a key role in the enhancement of the estimates’ precision, which allows us to better understand and monitor the crustal deformations at the limit of the plates.
Czasopismo
Rocznik
Strony
1149--1171
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
  • Earth Physics Laboratory, Faculty of Hydrocarbons and Chemistry, University of M’Hamed Bougara, Boumerdes, Algeria
  • Department of Space Geodesy, Centre of Space Techniques, Algerian Space Agency, Arzew, Algeria
autor
  • Earth Physics Laboratory, Faculty of Hydrocarbons and Chemistry, University of M’Hamed Bougara, Boumerdes, Algeria
  • Department of Space Geodesy, Centre of Space Techniques, Algerian Space Agency, Arzew, Algeria
autor
  • Department of Space Geodesy, Centre of Space Techniques, Algerian Space Agency, Arzew, Algeria
  • Department of Space Geodesy, Centre of Space Techniques, Algerian Space Agency, Arzew, Algeria
Bibliografia
  • 1. Allmendinger RW, Reilinger R, Loveless J (2007) Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics. https://doi.org/10.1029/2006TC002030
  • 2. Alothman AO, Fernandes RM, Bos MS, Schillak S, Elsaka B (2016) Angular velocity of Arabian plate from multi-year analysis of GNSS data. Arab J Geosci 9(8):1–10
  • 3. Altamimi Z, M’etivier L, Rebischung P, Rouby H, Collilieux X (2017) ITRF2014 plate motion model. J Geophys Res 209:1906–1912
  • 4. Ambraseys NN, Adams RD (1992) Reappraisal of major African earthquakes, south of 20° N, 1900–1930. Tectonophysics 209(1–4):293–296
  • 5. Anzidei M, Baldi P, Casula G, Galvani A et al. (2003) Data analysis of the first epoch GPS Algerian regional network. Bollettino di Geodesia e Scienze Affini-BGSA.
  • 6. Araszkiewicz A, Figurski M, Jarosiński M (2016) Erroneous GNSS strain rate patterns and their application to investigate the tectonic credibility of GNSS velocities. Acta Geophys 64(5):1412–1429
  • 7. Argus DF, Heflin MB (1995) Plate motion and crustal deformation estimated with geodetic data from the global positioning system. Geophys Res Lett 22:1973–1976
  • 8. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 180(3):913–960
  • 9. Bastos L, Osório J, Barbeito A, Hein G (1998) Results from geodetic measurements in the western part of the African-Eurasian plate boundary. Tectonophysics 294(3–4):261–269
  • 10. Beavan J, Haines J (2001) Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. J Geophys Res Solid Earth 106(B1):741–770
  • 11. Bian W, Wu J, Wu W (2020) Recent crustal deformation based on interpolation of GNSS velocity in Continental China. Remote Sens 12(22):3753
  • 12. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys 4(3):1027. https://doi.org/10.1029/2001GC000252
  • 13. Blewitt G, Hammond WC, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos. https://doi.org/10.1029/2018EO104623
  • 14. Bock Y, Melgar D (2016) Physical applications of GPS geodesy: a review. Rep Prog Phys 79(10):106801
  • 15. Bonnette G (2020) Characterizing deformation along an early-stage rift: GPS observations from the Northern Lake Malawi (Nyasa) Rift (Doctoral dissertation, Purdue University Graduate School).
  • 16. Bougrine A, Yelles-Chaouche AK, Calais E (2019) Active deformation in Algeria from continuous GPS measurements. Geophys J Int 217(1):572–588
  • 17. Calais E, DeMets C, Nocquet JM (2003) Evidence for a post–3.16 Ma change in Nubia–Eurasia–North America plate motions? Earth Planet Sci Lett 216:81–92
  • 18. Calais E, Ebinger C, Hartnady C, Nocquet JM (2006) Kinematics of the East African Rift from GPS and earthquake slip vector data. Geol Soc Lond Spec Publ 259(1):9–22
  • 19. Calais E. http://www.geologie.ens.fr/~ecalais/teaching/geodynamics/
  • 20. Corti G (2009) Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. [Firenze, Italy]. Elsevier Earth-Sci Rev 96(1–2):1–53
  • 21. Corti G, van Wijk J, Cloetingh S, Morley CK (2007) Tectonic inheritance and continental rift architecture: numerical and analogue models of the East African Rift system. Tectonics. https://doi.org/10.1029/2006TC002086
  • 22. Craig TJ, Jackson JA, Priestley K, McKenzie D (2011) Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys J Int 185(1):403–434
  • 23. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478
  • 24. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80
  • 25. Déprez A, Doubre C, Masson F, Ulrich P (2013) Seismicand aseismic deformationa long the East African Rift system froma reanalysisof the GPS velocity field of Africa. Geophys J Int 193:1353–1369. https://doi.org/10.1093/gji/ggt085
  • 26. Di Agostino AN, Selvaggi G (2004) Crustal motion along the Eurasia-Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J Geophys Res. https://doi.org/10.1029/2004JB002998
  • 27. Dumka RK, SuriBabu D, Kotlia BS, Kothyari GC, Prajapati S (2022) Crustal deformation measurements by global positioning system (GPS) along NSL, western India. Geod Geodyn 13(3):254–260
  • 28. Farolfi G, Del Ventisette C (2016) Contemporary crustal velocity field in Alpine Mediterranean area of Italy from new geodetic data. GPS Solut 20(4):715–722
  • 29. Feigl KL, Thatcher W (2006) Geodetic observations of post-seismic transients in the context of the earthquake deformation cycle. CR Geosci 338(14–15):1012–1028
  • 30. Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Wortel MJR, Spakman W, Govers R (2003) The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophys Res Lett. https://doi.org/10.1029/2003GL017089
  • 31. Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Combrinck L, Miranda JM, Spakman W (2004) Angular velocities of Nubia and Somalia from continuous GPS data: implications on present-day relative kinematics. Earth Planet Sci Lett 222(1):197–208
  • 32. Fernandes RMS, Miranda JM, Meijninger BML (2007) Surface velocity field of the Ibero-Maghrebian segment of the Eurasia-Nubia plate boundary. Geophys J Int 169(1):315–324
  • 33. Gaina C (2012) The tectonic framework of the African Plate illustrated by potential field data
  • 34. Gasperini P (2007) Kinematics of the western Africa-Eurasia plate boundary from focal mechanism and GPS data. Geophys J Int 169:1180–1200
  • 35. Gordon RG, Stein S (1992) Global tectonics and space geodesy. Science 256(5055):333–342
  • 36. Goudarzi MA, Cocard M, Santerre R (2014) EPC: Matlab software to estimate Euler pole parameters. GPS Solut 18(1):153–162. https://doi.org/10.1007/s10291-013-0354-4
  • 37. Goudarzi MA, Cocard M, Santerre R (2015) Estimating Euler pole parameters for eastern Canada using GPS velocities. Geod Cartogr 41(4):162–173
  • 38. Goudarzi MA, Cocard M, Santerre R (2016) Present-day 3D velocity field of eastern north america based on continuous GPS observations. Pure Appl Geophys 173:2387–2412
  • 39. Gourine B (2004) Ajustement avec contraintes du réseau géodésique national. Application : réseau de base’. Mémoire de magistère en Techniques spatiales et applications, CNTS – Arzew, Algérie.
  • 40. Haines AJ (1998) Representing distributed deformation by continuous velocity fields. Sci Rep 98(5)
  • 41. Hasterok D, Halpin J, Collins AS, Hand M, Kreemer C, Gard M, Glorie S (2022) New maps of global geological provinces and tectonic plates. Earth Sci Rev 231:104069
  • 42. Herring TA (2003) MATLAB Tools for viewing GPS velocities and time series. GPS Solut 7:194–199
  • 43. Hollenstein C, Kahle HG, Geiger A, Jenny S, Goes S, Giardini D (2003) New GPS constraints on the Africa-Eurasia plate boundary zone in southern Italy. Geophys Res Lett. https://doi.org/10.1029/2003GL017554
  • 44. Hoover W E (1984) Algorithms for confidence circles and ellipses. NOAA Technical Report NOS 107 C&GS 3.
  • 45. Jagoda M (2021) Determination of motion parameters of selected major tectonic plates based on GNSS station positions and velocities in the ITRF2014. Sensors 21(16):5342
  • 46. Jin S, Wang J (2008) Spreading change of Africa-South America plate: insights from space geodetic observations. Int J Earth Sci 97(6):1293–1300
  • 47. Jin S, Zhu W (2004) Tectonic motion characteristics of the Earth planet: from 80 Ma BP up to now. Sci China Ser G 47:352–364
  • 48. Kahveci M, Çırmık A, Doğru F, Pamukçu O, Gönenç T (2019) Subdividing the tectonic elements of Aegean and Eastern Mediterranean with gravity and GPS data. Acta Geophysica 67(2):491–500
  • 49. Kierulf HP, Ouassou M, Simpson MJR, Vestøl O (2013) A continuous velocity field for Norway. J Geodesy 87:337–349
  • 50. Mantovani E, Viti M, Babbucci D, Albarello D (2007) Nubia-Eurasia kinematics: an alternative interpretation from Mediterranean and North Atlantic evidence.
  • 51. McClusky S, Reilinger R, Mahmoud S, Ben SD, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138
  • 52. Meghraoui M, Pondrelli S (2012) Active faulting and transpression tectonics along the plate boundary in North Africa. Ann Geophys 55:5. https://doi.org/10.4401/ag-4970
  • 53. Meghraoui M, Amponsah P, Ayadi A et al (2016) The seismotectonic map of Africa. Epis J Int Geosci 39(1):9–18
  • 54. Meghraoui M (2014) Seismotectonic features of the African plate: the possible dislocation of a continent. In: EGU general assembly conference abstracts, p. 4450
  • 55. Midzi V, Hlatywayo DJ, Chapola LS, Kebede F et al (1999) Seismic hazard assessment in Eastern and Southern Africa. Ann Geophys. https://doi.org/10.4401/ag-3770
  • 56. Mukandila N, Galula R, Masson F, Meghraoui M (2018) Is the Nubia plate rigid or divided into sub-plates? Insights from geodetic data and the seismotectonic map of Africa. In: EGU general assembly conference abstracts, p. 4314
  • 57. Njoroge M, Malservisi R, Voytenko D, Hackl M (2015) Is Nubia plate rigid? A geodetic study of the relative motion of different cratonic areas within Africa. In: REFAG 2014, pp. 171–180. Springer, Cham
  • 58. Nocquet JM, Calais E, Altamimi Z, Sillard P, Boucher C (2001) Intraplate deformation in western Europe deduced from an analysis of the ITRF-97 velocity field. J Geophys Res 106:11239–11258
  • 59. Nocquet JM, Willis P, Garcia S (2006) Plate kinematics of Nubia–Somalia using a combined DORIS and GPS solution. J Geod 80(8–11):591–607
  • 60. Nocquet J M (2002) Mesure de la déformation crustale en Europe occidentale par géodésie spatiale (Doctoral dissertation, Nice).
  • 61. Reilinger R, McClusky S (2011) Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186(3):971–979
  • 62. Saleh M, Becker M (2014) A new velocity field from the analysis of the Egyptian permanent GPS network (EPGN). Arab J Geosci 7(11):4665–4682
  • 63. Saria E, Calais E, Altamimi Z, Willis P, Farah H (2013) A new velocity field for Africa from combined GPS and DORIS space geodetic solutions: contribution to the definition of the African reference frame (AFREF). J Geophys Res Solid Earth. https://doi.org/10.1002/jgrb.50137
  • 64. Saria E, Calais E, Stamps DS, Delvaux D, Hartnady CJH (2014) Present-day kinematics of the East African Rift. J Geophys Res Solid Earth. https://doi.org/10.1002/2013JB010901
  • 65. Sekkour K., Kahlouche S, Dekkiche H (2017) Estimation de la déformation crustale dans le Nord de l’Algérie durant 1998–2005 à partir des données GPS. Conference: Colloque G2 Géodésie et Geophysique
  • 66. Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res Solid Earth 107(B4):ETG11
  • 67. Serpelloni E, Vannucci G, Pondrelli S, Argnani A et al (2007) Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169(3):1180–1200
  • 68. Stamps DS, Saria E, Kreemer C (2018) A geodetic strain rate model for the East African Rift System. Sci Rep 8(1):1–9
  • 69. Swafiyudeen BAWA, Ojigi LM, Dodo JD, Lawal KM (2022) A methodology for estimating accurate velocity field of NigNET based on new ITRF realization. Contrib Geophys Geod 52(1):57–76
  • 70. Wedmore LN, Biggs J, Floyd M, Fagereng Å et al (2021) Geodetic constraints on cratonic microplates and broad strain during rifting of thick Southern African lithosphere. Geophys Res Lett 48(17):e2021GL093785
  • 71. Yang Z, Chen W-P (2010) Earthquakes along the East African Rift system: a multiscale, system-wide perspective. J Geophys Res 115:B12309. https://doi.org/10.1029/2009JB006779
  • 72. Yelles-Chaouche AK, Lammali K, Bellik A et al (2019) REGAT: a permanent GPS network in Algeria, configuration and first results. Heliyon 5(4):e01435
  • 73. Zakharov VS, Simonov DA (2010) An analysis of modern discrete movements of the Earth’s crustal blocks in geodynamically active regions based on GPS data. Mosc Univ Geol Bull 65(3):177–184
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0a6e330-66c7-4fbc-8310-6c371ff5b104
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.