PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wstępna charakterystyka pierwiastków ziem rzadkich i innych pierwiastków śladowych w osadach drobnoziarnistych z pogranicza triasu i jury w dawnej bruździe śródpolskiej

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Preliminary characteristics of rare earth elements and other trace elements in fine-grained deposits from the Triassic-Jurassic transition in the former Mid-Polish Trough
Konferencja
Kongres surowcowy = Raw materials congress : 5. Konferencja: Złoża kopalin - aktualne problemy prac poszukiwawczych, badawczych i dokumentacyjnych = 5th Conference: Natural resources - current problems of prospection, exploration and documentation ; 28. Konferencja: Aktualia i perspektywy gospodarki surowcami mineralnymi = 28th Conference: Updates and prospects of mineral resources management / pod red. nauk. Stanisława Z. Mikulskiego
Języki publikacji
PL
Abstrakty
PL
Skały drobnoklastyczne z pogranicza triasu i jury (retyk–hetang), nagromadzone w dawnej bruździe śródpolskiej były przedmiotem badań geochemicznych w Państwowym Instytucie Geologicznym – Państwowym Instytucie Badawczym w Warszawie. 94 próbki iłowców i mułowców, pochodzące z sześciu archiwalnych rdzeni wiertniczych, przeanalizowano metodami ICP-MS i XRF, na zawartość pierwiastków ziem rzadkich (REE) i innych pierwiastków śladowych. Wyniki wskazują, że źródłem większości badanych mułowców i iłowców były skały osadowe górnej skorupy kontynentalnej starych obszarów kratonicznych, których protolit miał charakter umiarkowanie felzytowy. Procesy wietrzenia i recyklingu zmodyfikowały, do pewnego stopnia, pierwotny skład chemiczny. Jednak w retyku i wczesnym hetangu, w południowo-wschodnim segmencie bruzdy, niektóre dane geochemiczne sugerują większą dostawę z wulkanicznego protolitu o charakterze maficznym. Ponadto, w kilku próbkach zaobserwowano wyraźne wzbogacenie w pierwiastki ziem rzadkich, w wyniku domieszki minerałów akcesorycznych, będących głównymi nośnikami REE. Tym niemniej, na podstawie obecnie otrzymanych wyników, koncentracje REE (i innych pierwiastków śladowych) w bruździe śródpolskiej są niskie i mają one naukowe znaczenie wskaźnikowe, natomiast nie mają znaczenia surowcowego.
EN
Fine-grained siliciclastic rocks from the Triassic-Jurassic transition (Rhaetian–Hettangian) in the former Mid-Polish Trough were the subject of the geochemical study at the Polish Geological Institute – National Research Institute in Warsaw. Ninety-four samples of claystones and mudstones from six archived drill cores were analysed by ICP-MS and XRF for rare earth elements (REE) and other trace elements. The results indicate that the sources of most of the claystones and mudstones were sedimentary rocks of the upper continental crust of old cratonic areas, where the protolith had a moderately felsic character. Weathering and recycling processes modified the original chemical composition to some extent. However, during Rhaetian and early Hettangian, some geochemical data in the south-eastern segment of the MPT suggest significant input from a mafic volcanic protolith. Moreover, a clear enrichment in rare-earth elements was observed in few samples, caused by admixtures of accessory minerals (being a main carrier of REE). Nevertheless, based on currently obtained data, the Rhaetian–Hettangian concentrations of REE (and other trace elements) in the MPT are low and they are of scientific indicative significance, not of raw material importance.
Rocznik
Tom
Strony
255--270
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, ul. Rakowiecka 4, 00-975 Warszawa
Bibliografia
  • 1. BAULUZ B., MAYAYO M.J., FERNANDEZ-NIETO C., GONZALEZ LOPEZ J.M., 2000 – Geochemistry of Precambrian and Paleozoic siliclatic rocks from the Iberian range (NE Spain): implications for source area weathering, sorting, provenance, and tectonic setting. Chem. Geol., 168: 135–150.
  • 2. BHATIA M.R., CROOK K.A.W., 1986 – Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineralog. Petrol., 92: 181–193.
  • 3. BRAŃSKI P., 2009a – Influence of palaeoclimate conditions and greenhouse effect on the Hettangian clay mineral assemblages (Holy Cross Mts. area, Polish Basin). Geol. Quart., 53: 363–368.
  • 4. BRAŃSKI P., 2009b – Epizody intensywnego wietrzenia chemicznego zapisane w profilach hetangu z obrzeżenia Gór Świętokrzyskich (wyniki nowych badań). Geologia (kwartalnik AGH), 35, 3/1: 21–30.
  • 5. BRAŃSKI P., 2010 – Kaolinite peaks in early Toarcian profiles from the Polish Basin – an inferred record of global warming. Geol. Quart., 54: 15–24.
  • 6. BRAŃSKI P., 2011 – Formacja zagajska i przysuska formacja rudonośna jury dolnej w regionie świętokrzyskim: paleotektoniczno-paleogeograficzne uwarunkowania genezy surowców ceramicznych [pr. doktor.] (niepubl.). Narod. Arch. Geol. PIG-PIB, Warszawa.
  • 7. BRAŃSKI P., 2012 – The mineralogical record of the Early Toarcian stepwise climate changes and other environmental variation (Ciechocinek Formation, Polish Basin). Volumina Jurassica, 10: 1–24.
  • 8. BRAŃSKI P., 2014 – Climatic disaster at the Triassic–Jurassic boundary – a clay minerals and major elements record from the Polish Basin. Geol. Quart., 58, 2: 291–310.
  • 9. BRAŃSKI P., MIKULSKI S.Z., 2016 – Rare earth elements distribution in fine-grained deposits from the uppermost Triassic and Lower Jurassic of the Polish Basin: provenance and weathering in the source area. Geol. Quart., 60, 2: 441–450.
  • 10. BRAUN J.J., VIERS J., DUPRE B., POLVE M., NDAM J., MULLER J.J., 1998 – Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochim. Cosmochim. Acta, 62, 2: 273–279.
  • 11. COHEN A.S., COE A.L., 2007 – The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os-isotope evolution of sea water. Palaeogeogr., Palaeoclimatol., Palaeoecol., 244: 374–390.
  • 12. CONDIE K.C., DENGATE J., CULLERS R.L., 1995 – Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochim. Cosmochim. Acta, 59: 279–294.
  • 13. COX R., LOWE D.R., CULLERS R.L., 1995 – The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, 59: 2919–2940.
  • 14. CULLERS R.L., 1988 – Mineralogical and chemical changes of soil and stream sediments formed by intense weathering of the Danberg granite, Georgia, USA. Chem. Geol., 113: 327–343.
  • 15. CULLERS R.L., 1994 – The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim. Cosmochim. Acta, 58: 4955–4972.
  • 16. CULLERS R.L., 2000 – The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51: 181–203.
  • 17. CULLERS R.L., BARRET T., CARLSON R., ROBINSON B., 1987 – Rare earth element and mineralogical changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chem. Geol., 63: 275–295.
  • 18. CULLERS R.L., BASU A., SUTTNER L.J., 1988 – Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem. Geol., 70: 335–348.
  • 19. DADLEZ R., NARKIEWICZ M., STEPHENSON R.A., VISSER M.T.M., VEN WEES J.-D., 1995 – Tectonic evolution of the Mid-Polish Trough: modeling implications and significance for central European geology. Tectonophysics, 252: 179–195.
  • 20. FEDO C.M., YOUNG G.M., NESBITT H.W., 1997 – Paleoclima¬tic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Precambrian Res., 86: 201–223.
  • 21. FLOYD P.A., LEVERIDGE B.E., 1987 – Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc., 144: 531–542.
  • 22. GROMET L.P., SILVER L.T., 1983 – Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim. Cosmochim. Acta, 47: 925–939.
  • 23. HAKENBERG M., ŚWIDROWSKA J., 1997 – Propagation of the south-eastern segment of the Polish Trough connected with bounding fault zones (from the Permian to the Late Jurassic). Comptes Renduz Acad. Sc. Paris, 324: 793–803.
  • 24. HASSAN S., ISHIGA H., ROSER B.P., DOZEN K., NAKA T., 1999 – Geochemistry of Permian-Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin. Chem. Geol., 158: 293–314.
  • 25. HESSELBO S.P., PIEŃKOWSKI G., 2011 – Stepwise atmospheric carbon isotope excursion during the Early Jurassic oceanic anoxic event. Earth Planet. Sc. Let., 301: 365–372.
  • 26. HESSELBO S.P., ROBINSON S.A., SURLYK F., PIASECKI S., 2002 – Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology, 30: 251–254.
  • 27. KORTE C., HESSELBO S.P., 2011 – Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic. Paleoceanography, 26, PA4219, doi:10.1029/2011PA002160.
  • 28. LEE Y.I., 2002 – Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedim. Geol., 149: 219–235.
  • 29. LINTNEROVÁ O., MICHALIK J., UHLIK P., SOTAK J., WEISSOVA Z., 2013 – Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.). Geol. Quart., 57, 4: 701–728.
  • 30. McELWAIN J.C., BEERLING D.J., WOODWARD F.I., 1999 – Fossil plants and global warming at the Triassic–Jurassic boundary. Science, 285: 1386–1390.
  • 31. McLENNAN S.M., 1989 – Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Miner. Geochem., 21: 169–200.
  • 32. McLENNAN S.M., 2001 – Relationship between the trace elements composition of sedimentary rocks and upper continental crust. Geochem., Geophys., Geosyst., 2, Paper number 2000GC000109.
  • 33. McLENNAN S.M., HEMMING S., McDANIEL D.K., HANSON G.N., 1993 – Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap., 284: 21–40.
  • 34. MIDDELBURG J.J., VAN DER WEIJDEN C.H., WOITTIEZ J.R.W., 1988 – Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol., 68: 253–273.
  • 35. MIKULSKI S.Z., OSZCZEPALSKI S., BRAŃSKI P., KOZDRÓJ W., MARKOWIAK M., KRAMARSKA R., CHMIELEWSKI A., SADŁOWSKA K., DAMRAT M., 2014 – Weryfikacja stanu wiedzy o mineralizacji metalami ziem rzadkich (REE) wraz z pilotażową oceną ich perspektyw złożowych w Polsce z wyłączeniem obszaru kratonu wschodnioeuropejskiego, Nr 1463/2016. Narod. Arch. Geol. PIG-PIB, Warszawa.
  • 36. NESBITT H.W., 1979 – Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279: 206–210.
  • 37. NESBITT H.W., MARKOVICS G., 1997 – Weathering of granodiorite crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim. Cosmochim. Acta, 61: 1653–1670.
  • 38. NESBITT H.W., MacRAE N.D., KRONBERG B.I., 1990 – Amazon deep sea fan muds: light REE enriched products of extreme chemical weathering. Earth Planet. Sc. Lett., 100: 118– 123.
  • 39. NYAKAIRU G.W.A., KOEBERL C., 2001 – Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochem. J., 35: 13–28.
  • 40. PÁLFY J., DEMÉNY A., HAAS J., HETÉNYI M., ORCHARD M.J., VETT I., 2001 – Carbon isotope anomaly and other geochemical changes at the Triassic–Jurassic boundary from a marine section in Hungary. Geology, 29: 1047–1050.
  • 41. PIEŃKOWSKI G., 2004 – The epicontinental Lower Jurassic of Poland. Pol. Geol. Inst. Spec. Pap., 12: 1–154.
  • 42. PIEŃKOWSKI G., SCHUDACK M.E., 2008 – Jurassic. In: The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic (ed. T. McCann): 823–922. Geological Society, London.
  • 43. PIEŃKOWSKI G., NIEDŹWIEDZKI G., WAKSMUNDZKA M., 2012 – Sedimentological, palynological, and geochemical studies of the terrestrial Triassic–Jurassic boundary in north-western Poland. Geol. Mag., 149: 308–332.
  • 44. PIEŃKOWSKI G., NIEDŹWIEDZKI G., BRAŃSKI P., 2014 – CAMP-related rapid climatic reversals caused the end-Triassic biota crisis – evidences from continental strata in Poland. In: Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds. G. Keller, A. Kerr). Geol. Soc. Am. Spec. Pap., 505: 263–286.
  • 45. RODDAZ M., VIERS J., BRUSSET S., BABY P., BOUCAYRAND C., HÉRAIL G., 2006 – Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem. Geol., 226: 31–65.
  • 46. SHELDON N.D., TABOR J.N., 2009 – Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev., 95: 1–52.
  • 47. TAYLOR S.R., McLENNAN S.M., 1985 – The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
  • 48. TYLER G., 2004 – Rare earth elements in soil and plant systems – a review. Plant and Soil, 267: 191–206.
  • 49. WRONKIEWICZ D.J., CONDIE K.C., 1987 – Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochim. Cosmochim. Acta, 51: 2401–2416.
  • 50. ZHANG Y., PE-PIPER G., PIPER D.J.W., 2014 – Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology, 61, 2: 383–410.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0a5ec79-7751-4b2e-ac19-686bc6a09f11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.