Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Autonomous driving is currently an issue of heated debate in automotive engineering. Accurate prediction of the future trajectory of self-driving cars can significantly reduce the occurrence of traffic accidents. However, predicting the future trajectories of vehicles is a challenging task since it is influenced by the interaction behaviours of neighbouring vehicles. This paper proposes a framework that allows for parameter sharing and cross-layer independence, based on a dynamic graph convolutional spatiotemporal network, to study the interactions between vehicles and the temporal dynamics in historical trajectories. By extracting dynamic adjacency matrices from different vehicle interaction features, the model can describe dynamic spatiotemporal relationships and facilitate addressing changes in traffic scenarios. Finally, the proposed model is experimentally compared with existing mainstream trajectory prediction methods using the NGSIM dataset. The results demonstrate that our trajectory prediction model achieved excellent performance in terms of model parameters and prediction accuracy. Compared to the four mainstream models, our model improved accuracy by 35.73%. In addition, we also analyze the relationship between model complexity and efficiency.
Rocznik
Tom
Strony
art. no. e152610
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
autor
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
autor
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
autor
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
autor
- Shanghai Smart Vehicle Cooperating Innovation Center Co., Ltd., Shanghai, 201805, China
autor
- Shanghai Smart Vehicle Cooperating Innovation Center Co., Ltd., Shanghai, 201805, China
autor
- Shanghai Smart Vehicle Cooperating Innovation Center Co., Ltd., Shanghai, 201805, China
autor
- Shanghai Smart Vehicle Cooperating Innovation Center Co., Ltd., Shanghai, 201805, China
Bibliografia
- [1] M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence, machine learning and deep learning in advanced robotics, a review,” Cogn. Robot., vol. 3, pp. 54–70, 2023, doi: 10.1016/j.cogr.2023.04.001.
- [2] Y. Bezin and B.A. Pĺlsson, “Multibody simulation benchmark for dynamic vehicle-track interaction in switches and crossings: modelling description and simulation tasks,” Veh. Syst. Dyn., vol. 61, no. 3, pp. 644–659, Mar. 2023, doi: 10.1080/00423114.2021.1942079.
- [3] C. Tang, J. Chen, and M. Tomizuka, “Adaptive Probabilistic Vehicle Trajectory Prediction Through Physically Feasible Bayesian Recurrent Neural Network,” in 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada: IEEE, May 2019, pp. 3846–3852. doi: 10.1109/ICRA.2019.8794130.
- [4] M. Deng, S. Li, X. Jiang, and X. Li, “Vehicle Trajectory Prediction Method Based on ‘Current’ Statistical Model and Cubature Kalman Filter,” Electronics, vol. 12, no. 11, p. 2464, May 2023, doi: 10.3390/electronics12112464.
- [5] M.M. Taye, “Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions,” Computers, vol. 12, no. 5, p. 91, Apr. 2023, doi: 10.3390/computers12050091.
- [6] U.A. Bhatti, H. Tang, G. Wu, S. Marjan, and A. Hussain, “Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence,” Int. J. Intell. Syst., vol. 2023, pp. 1–28, Feb. 2023, doi: 10.1155/2023/8342104.
- [7] H.V. Dudukcu, M. Taskiran, Z.G. Cam Taskiran, and T. Yildirim, “Temporal Convolutional Networks with RNN approach for chaotic time series prediction,” Appl. Soft Comput., vol. 133, p. 109945, Jan. 2023, doi: 10.1016/j.asoc.2022.109945.
- [8] A. Barth and U. Franke, “Where will the oncoming vehicle be the next second?,” in 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands: IEEE, Jun. 2008, pp. 1068–1073. doi: 10.1109/IVS.2008.4621210.
- [9] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic Predictive Control of Autonomous Vehicles in Uncertain Environments” in 12th International Symposium on Advanced Vehicle Control, 2014.
- [10] S. Danielsson, L. Petersson, and A. Eidehall, “Monte Carlo based Threat Assessment: Analysis and Improvements,” in 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey: IEEE, Jun. 2007, pp. 233–238. doi: 10.1109/IVS.2007.4290120.
- [11] S.A. Goli, B.H. Far, and A.O. Fapojuwo, “Vehicle Trajectory Prediction with Gaussian Process Regression in Connected Vehicle Environment★,” in 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu: IEEE, Jun. 2018, pp. 550–555. doi: 10.1109/IVS.2018.8500614.
- [12] Y. Wang, Z. Liu, Z. Zuo, Z. Li, L. Wang, and X. Luo, “Trajectory Planning and Safety Assessment of Autonomous Vehicles Based on Motion Prediction and Model Predictive Control,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8546–8556, Sep. 2019, doi: 10.1109/TVT.2019.2930684.
- [13] N. Deo and M.M. Trivedi, “Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver based LSTMs,” in 2018 IEEE Intelligent Vehicles Symposium (IV), Jun. 2018, pp. 1179–1184. doi: 10.1109/IVS.2018.8500493.
- [14] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded Spaces,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 961–971. doi: 10.1109/CVPR.2016.110.
- [15] N. Deo and M.M. Trivedi, “Convolutional Social Pooling for Vehicle Trajectory Prediction,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, USA: IEEE, Jun. 2018, pp. 1549–15498. doi: 10.1109/CVPRW.2018.00196.
- [16] A. Zyner, S. Worrall, and E. Nebot, “A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1759–1764, Jul. 2018, doi: 10.1109/LRA.2018.2805314.
- [17] S. Dai, L. Li, and Z. Li, “Modeling Vehicle Interactions via Modified LSTM Models for Trajectory Prediction,” IEEE Access, vol. 7, pp. 38287–38296, 2019, doi: 10.1109/ACCESS.2019.2907000.
- [18] Y. Xing, C. Lv, and D. Cao, “Personalized Vehicle Trajectory Prediction Based on Joint Time-Series Modeling for Connected Vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1341–1352, Feb. 2020, doi: 10.1109/TVT.2019.2960110.
- [19] B. Yu, H. Yin, and Z. Zhu, “Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Jul. 2018, pp. 3634–3640. doi: 10.24963/ijcai.2018/505.
- [20] V.B. Semwal, R. Jain, P. Maheshwari, and S. Khatwani, “Gait reference trajectory generation at different walking speeds using LSTM and CNN,” Multimed. Tools Appl., vol. 82, no. 21, pp. 33401–33419, Sep. 2023, doi: 10.1007/s11042-023-14733-2.
- [21] S. Sharma, A. Singh, G. Sistu, M. Halton, and C. Eising, “Optimizing Ego Vehicle Trajectory Prediction: The Graph Enhancement Approach,” arXiv: arXiv:2312.13104. [Online]. Available: http://arxiv.org/abs/2312.13104
- [22] K. Wu, Y. Zhou, H. Shi, X. Li, and B. Ran, “Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory Prediction Using Diffusion Graph Convolutional Networks,” IEEE Trans. Intell. Veh., vol. 9, no. 2, pp. 3630–3643, Feb. 2024, doi: 10.1109/TIV.2023.3341071.
- [23] Y. Cai et al., “Environment-Attention Network for Vehicle Trajectory Prediction,” IEEE Trans. Veh. Technol., vol. 70, no. 11, pp. 11216–11227, Nov. 2021, doi: 10.1109/TVT.2021.3111227.
- [24] M. Liang et al., “Learning Lane Graph Representations for Motion Forecasting,” arXiv: arXiv:2007.13732. [Online]. Available: http://arxiv.org/abs/2007.13732
- [25] A. Abdelraouf, R. Gupta, and K. Han, “Interaction-Aware Personalized Vehicle Trajectory Prediction Using Temporal Graph Neural Networks,” in 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain: IEEE, Sep. 2023, pp. 2070–2077. doi: 10.1109/ITSC57777.2023.10421928.
- [26] L. Shi et al., “SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory Prediction,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA: IEEE, Jun. 2021, pp. 8990–8999. doi: 10.1109/CVPR46437.2021.00888.
- [27] Z. Sheng, Y. Xu, S. Xue, and D. Li, “Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 17654–17665, Oct. 2022, doi: 10.1109/TITS.2022.3155749.
- [28] T.N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” arXiv: arXiv:1609.02907. [Online]. Available: http://arxiv.org/abs/1609.02907
- [29] Z. Hao, X. Huang, K. Wang, M. Cui, and Y. Tian, “Attention-Based GRU for Driver Intention Recognition and Vehicle Trajectory Prediction,” in 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China: IEEE, Dec. 2020, pp. 86–91. doi: 10.1109/CVCI51460.2020.9338510.
- [30] S. Xing, P. Fan, X. Ma, and Y. Wang, “Research on robot path planning by integrating state-based decision-making A* algorithm and inertial dynamic window approach,” Intell. Serv. Robot., vol. 17, pp. 901–914, Jun. 2024, doi: 10.1007/s11370-024-00547-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0a15e88-39c3-4f31-8ab5-da05f978ad16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.