PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C). The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95%) were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.
Rocznik
Strony
359--371
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, 18 Konarskiego Street, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, 18 Konarskiego Street, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, 18 Konarskiego Street, 44-100 Gliwice, Poland
Bibliografia
  • 1. Bartela Ł., Skorek-Osikowska A., Kotowicz J., 2014. Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a carbon capture installation. Energy Convers. Manage., 85, 750-763. DOI: 10.1016/j.energy.2014.01.015.
  • 2. Bredesen R., Jordal K., Bolland A., 2004. High-temperature membranes in power generation with CO2 capture. Chem. Eng. Process. Process Intensif., 43, 1129-1158. DOI: 10.1016/j.cep.2003.11.011.
  • 3. Czakiert T., Muskała W., Jankowska S., Krawczyk G., Borecki P., Jesionowski L., Nowak W., 2012. The effect of oxygen concentration on nitrogen conversion in oxy-fuel CFB environment. Proc. of the 21st International Conference on Fluidized Bed Combustion. Naples, Italy, 3-6 June 2012, 495-502.
  • 4. Darde A., Prabhakar R., Tranier J-P., Perrin N., 2009. Air separation and flue gas compression and purification units for oxy-coal combustion systems. Energy Procedia, 1, 527-534. DOI: 10.1016/j.egypro.2009.01.070.
  • 5. Dryjańska A., 2013. Thermodynamic analysis of supercritical power plant with a fluidized bed boiler (CFB) OXY-type. Rynek Energii, 104, 11-15 (in Polish).
  • 6. Engels S., Beggel F., Modigell M., Stadler H., 2010. Simulation of a membrane unit for oxyfuel power plant under consideration of realistic BSCF membrane properties. J. Membr. Sci., 359, 93-101. DOI: 10.1016/j.memsci.2010.01.048.
  • 7. Gambini M., Vellini M., 2012. Oxygen transport membranes for ultra-supercritical (USC) power plants with very low CO2 emissions. J. Eng. Gas Turbines Power, 134, 081801-10. DOI: 10.1115/1.4006482.
  • 8. Ito W., Nagai T., Sakon T., 2007. Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics, 178, 809-816. DOI: 10.1016/j.ssi.2007.02.031.
  • 9. Janusz-Szymańska K., Kotowicz J., 2011. Analysis of CO2 membrane separation in the ultra-supercritical coal fired power plant. Rynek Energii, 94, 53-56 (in Polish).
  • 10. Janusz-Szymańska K., 2012. Economic efficiency of an IGCC system integreted with CCS installation. Rynek Energii, 102, 24-30 (in Polish).
  • 11. Kotowicz J., Janusz K., 2007. Manners of the reduction of the emission CO2 from the energetic processes. Rynek Energii, 68,10-18 (in Polish).
  • 12. Kotowicz J., Chmielniak T., Janusz-Szymańska K., 2010. The influence of membrane CO2 separation on the efficiency of a coal-fired power plant. Energy, 35, 841-850. DOI: 10.1016/j.energy.2009.08.008.
  • 13. Kotowicz J., Janusz-Szymańska K., 2010. The influence of CO2 membrane separation on the operating characteristics of a coal-fired power plant. Chem. Process Eng., 31, 681-697.
  • 14. Kotowicz J., Janusz-Szymańska K., 2011. Influence of CO2 separation on the efficiency of the supercritical coal fired power plant. Rynek Energii, 93, 8-12 (in Polish).
  • 15. Kotowicz J., Łukowicz H., Bartela Ł., Michalski S., 2011. Validation of a program for supercritical power plant calculations. Arch. Thermodyn., 32, 81-89. DOI: 10.2478/v10173-011-0033-1.
  • 16. Kotowicz J., Michalski S., 2013. Methodologies for determining efficiency and break-even price of electricity for an oxy type power plant with a high temperature membrane for air separation, In: Węglowski B., Duda P. (Eds.), Analiza systemów energetycznych. Wydawnictwo Politechniki Krakowskiej, Krakow, 171-189.
  • 17. Kotowicz J., Sobolewski A., Iluk T., 2013. Energetic analysis of a system integrated with biomass gasification. Energy, 52, 265-278. DOI: 10.1016/j.energy.2013.02.048.
  • 18. Liszka M., Ziębik A., 2010. Coal-fired oxy-fuel power unit - Process and system analysis. Energy, 35, 943-951. DOI: 10.1016/j.energy.2009.07.007.
  • 19. Pfaff I., Kather A., 2009. Comparative thermodynamic analysis and integration issues of CCS steam power plant based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia, 1, 495-502. DOI: 10.1016/j.egypro.2009.01.066.
  • 20. Pipitone G., Bolland O., 2009. Power generation with CO2 capture: technology for CO2 purification. Int. J. Greenhouse Gas Control, 3, 528-534. DOI: 10.1016/j.ijggc.2009.03.001.
  • 21. Skorek-Osikowska A., Bartela Ł., 2010. Model of a supercritical oxy-boiler -analysis of the parameters. Rynek Energii, 90, 69-75.
  • 22. Skorek-Osikowska A., Janusz-Szymańska K., Kotowicz J., 201). Modeling and analysis of selected carbon dioxide capture methods in IGCC systems. Energy, 45, 92–100. DOI: 10.1016/j.energy.2012.02.002.
  • 23. Skorek-Osikowska A., Kotowicz J., Janusz-Szymańska K., 2012. Comparison of the energy intensivity of the selected CO2-capture methods applied in the ultra-supercritical coal power plants. Energy Fuels, 26, 6509-6517. DOI: 10.1021/ef201687d.
  • 24. Skorek-Osikowska A., Bartela Ł., Kotowicz J., Job M., 2013. Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology. Energy Convers. Manage., 76, 109-120. DOI: 10.1016/j.enconman.2013.07.032.
  • 25. Skorek-Osikowska A., Bartela Ł., Kotowicz J., Sobolewski A., Iluk T., Remiorz L., 2014. The influence of the size of the CHP system integrated with a biomass fuelled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation. Energy, 67, 328-340. DOI: 10.1016/j.energy.2014.01.015.
  • 26. Statistics of Polish electroenergetic sector, 2013. The Energy Market Agency, Warsaw.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b09f6efd-f187-4fec-8d95-d3439c53b069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.