Tytuł artykułu
Identyfikatory
Warianty tytułu
Unsupervised abnormal crowd activity detection in surveillance systems
Konferencja
Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji KKRRiT 2016 (XVI ; 27-29.06.2016 ; Kraków, Polska)
Języki publikacji
Abstrakty
W niniejszym artykule opisano nienadzorowaną metodę detekcji anormalnych zachowań tłumu w dozorowych sekwencjach wizyjnych. Proponowane rozwiązanie wykorzystuje deskryptory standardu MPEG-7 do opisu sceny oraz algorytm Particle Filter do klasyfikacji. Badania przeprowadzono na ogólnodostępnej bazie sekwencji testowych UMN. Otrzymane wyniki są porównywalne do wyników uzyskiwanych przez metody nadzorowane.
We propose an unsupervised method for abnormal crowd activity detection in surveillance systems. Proposed solution is using MPEG-7 Motion Activity descriptors and Particle Filter algorithm for classification. The experiments were performed on UMN dataset sequences. The detection results are comparable to results obtained by supervised methods.
Wydawca
Rocznik
Tom
Strony
336--339, CD
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Katedra Telekomunikacji Multimedialnej i Mikroelektroniki; ul. Polanka 3, 61-131 Poznań,; tel. + (48) 6653900, fax: + (48) 6653899,
autor
- Katedra Telekomunikacji Multimedialnej i Mikroelektroniki; ul. Polanka 3, 61-131 Poznań,; tel. + (48) 6653900, fax: + (48) 6653899,
autor
- Katedra Telekomunikacji Multimedialnej i Mikroelektroniki; ul. Polanka 3, 61-131 Poznań,; tel. + (48) 6653900, fax: + (48) 6653899,
autor
- Katedra Telekomunikacji Multimedialnej i Mikroelektroniki; ul. Polanka 3, 61-131 Poznań,; tel. + (48) 6653900, fax: + (48) 6653899,
Bibliografia
- [1] Wu S., Wong H.-S., Yu Z.. 2014. „A Bayesian model for crowd escape behavior detection”. IEEE Transactions on Circuits and Systems for Video Technology, 24(1): 85-98.
- [2] Okuma K., Taleghani A., Freitas N.D., Little J.J., Lowe D.G.. 2004. „A boosted particle filter: multitarget detection and tracking”. Proceedings of Eighth European Conference on Computer Vision, 28-39.
- [3] Yang H., Cao Y., Wu S., Lin W., Zheng S., You Z.. 2012. „Abnormal crowd behavior detection based on local pressure model”. Signal & Information Processing Association Annual Summit and Conference, 1-4.
- [4] Wang B., Ye M., Li X., Zhao F., Ding J.. 2012. „Abnormal crowd behavior detection using highfrequency and spatio-temporal features”. Machine Vision and Applications, 23(3): 501-511.
- [5] Mehran R., Oyama A., Shah M.. 2009. „Abnormal crowd behavior detection using social force model”. IEEE Conference on Computer Vision and Pattern Recognition, 935-942.
- [6] Miao Y., Song J.. 2014. „Abnormal Event Detection Based on SVM in Video Surveillance”. IEEE Workshop on Advanced Research and Technology in Industry Applications, 1379-1383.
- [7] Liao H., Xiang J., Sun W., Feng Q., Dai J.. 2011. „An Abnormal Event Recognition in Crowd Scene”. Sixth International Conference on Image and Graphics, 731-736.
- [8] Divakaran Ajay. 2001. „An Overview of MPEG-7 Motion Descriptor and Their Applications”. Computer Analysis of Image and Patterns, Lecture Notes in Computer Science, 2124: 29-40.
- [9] Li W., Mahadevan V., Vasconcelos N.. 2014. „Anomaly Detection and Localization in Crowded Scenes”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1): 18-32.
- [10] Lin H., Deng J.D., Woodford B.J.. 2015. „Anomaly detection in crowd scenes via online adaptive oneclass support vector machines”. IEEE International Conference on Image Processing, 2434-2438.
- [11] ISO/IEC 14496-10. 2010. „Coding of Audio-Visual objects – Part 10: Advanced Video Coding”.
- [12] Isard M., Blake A.. 1998. „CONDENSATION – Conditional Density Propagation for Visual Tracking”. International Journal of Computer Vision, 29(1): 5-28.
- [13] Zhao J., Xu Y., Yang X., Yan Q.. 2011. „Crowd instability analysis using velocity-field based social force model”. IEEE Visual Communications and Image Processing, 1-4.
- [14] Ito Y. Kitani K.M., Bagnell J.A., Hebert M.. 2012. „Detecting Interesting Events Using Unsupervised Density Ratio Estimation”. Computer Vision – ECCV 2012. Workshops and Demonstrations, Lecture Notes in Computer Science, 7585: 151-161.
- [15] Boiman O., Irani M.. 2005. „Detecting irregularities in images and in video”. Tenth IEEE International Conference on Computer Vision, 1: 462-469.
- [16] Zhong H., Shi J., Visontai M.. 2004. „Detecting unusual activity in video”. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2: 819-826.
- [17] Breitenstein M.D., Grabner H., Van Gool L.. 2009. „Hunting Nessie – Real-time abnormality detection from webcams”. IEEE 12th International Conference on Computer Vision Workshops, 1243-1250.
- [18] ISO/IEC 15938-3:2002/Amd 3:2009. Information Technology – Multimedia content description interface – Part 3: Visual, Amendment 3: Image signature tools.
- [19] Khan Z., Balch T., Dellaert F.. 2005. „MCMC-based particle filtering for tracking a variable number of interacting targets”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(11): 1805-1819.
- [20] Doucet A., Godsill S., Andrieu C.. 2000. „On sequential Monte Carlo sampling methods for Bayesian filtering”. Statistics and Computing, 10(3): 197-208.
- [21] Zhao B., Fei-Fei L., Xing E.P.. 2011. „Online detection of unusual events in videos via dynamic sparse coding”. 2011 IEEE Conference on Computer Vision and Pattern Recognition, 3313-3320.
- [22] Qi Z., Ting R., Husheng F., Jinlin Z.. 2012. „Particle Filter Object Tracking Based on Harris-SIFT Feature Matching”. Procedia Engineering, 29: 924-929.
- [23] Helbing D., Molnar P.. 1995. „Social Force Model for Pedestrian Dynamics”. Physical review E, 51(5): 4282-4286.
- [24] Wang X., Ma X., Grimson E.. 2007. „Unsupervised Activity Perception by Hierarchical Bayesian Models”. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1-8.
- [25] UMN. Unusual crowd activity dataset. http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b09ea716-6bd2-4724-9fbf-6290c2d27a2c