PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Performance of Hybrid Constructed Wetland System for Treating the Batik Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The batik industry is one of the Indonesian economic drivers. However, most of the batik industries discharge their wastewater without any prior treatment, thus endangering the environment. This research aims to investigate the ability of hybrid constructed wetlands (CWs) system using Canna indica in the batik wastewater treatment. The parameters studied were chemical oxygen demand (COD), total suspended solid (TSS), and oil and grease (FOG) with 3, 5, and 7 days of hydraulic retention time (HRT). The results indicate that the hybrid constructed wetland system using Canna indica optimally gains the COD and FOG removal efficiency on day 3 at 89.61% and 89.53%, while the TSS removal efficiency on day 5 at 98.74%. Despite the high removal efficiency, the effluent parameters remain below the standards for direct discharge into waterbodies. Therefore, further research is needed to investigate the appropriate pre-/advanced treatment to be combined with the hybrid constructed wetland in batik wastewater treatment.
Rocznik
Strony
94--103
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Departement of Civil Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Kampus Unesa Ketintang, Surabaya, 60231, Indonesia
  • Departement of Civil Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Kampus Unesa Ketintang, Surabaya, 60231, Indonesia
Bibliografia
  • 1. Abdou E.Z., Elgawad A.I. 2016. Constructed wetland as a sustainable wastewater treatment method in communities. Procedia Environmental Sciences, 34, 605–617.
  • 2. Ajayi A.A., Peter-Albert C.F., Ajojesu T.P., Bishop S.A., Olasehinde G.I, Siyanbola T.O. 2016. Biochemical Oxygen Demand and carbonaceous Oxigen Demand of the Covenant University Sewage Oxidation Pond. Covenant Journal of Physical and Life Science, 4(1), 11–19.
  • 3. Arifan F., Nugraheni F.S., Devara H.R., Lianandya N.E. 2018. Wastewater treatment from batik industries Using TiO2 nanoparticles. IOP Cons. Series: Earth and Environmental Science, 116, 1–6.
  • 4. Birgani P.M., Ranjbar N., Abdullah R.C., Wong K.T., Lee G., Ibrahim S., Park C., Yoon Y., Jang M. 2016. An efficient and economical treatment of batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide and palm shell-based active carbon application. Journal of Environmental Management, 1–11.
  • 5. Cui L., Ouyang Y., Lou Q., Yang F., Chen Y., Zhu W., Luo S. 2010. Removal of nutrients from wastewater with Canna indica L. under different verticalflow constructed wetland conditions. Ecological Engineering, 36, 1083–1088.
  • 6. Cule N., Vilotic D., Nesic M., Veselinovic M., Drazic D., Mitovic S. 2016. Phytoremediation potential of Canna indica L. in water contaminated with lead. Fresenesius Environmental Bulletin, 25(11), 3728–3733.
  • 7. Darsini I.P., Shamsad S., Paul M.J. 2015. Canna indica (L.): A plant with potential healing powers: A review. International Journal of Pharma and Bio Science, 6(2), 1–8.
  • 8. Dehghani M., Sadatjo H., Maleknia H., Shamsedini N. 2014. A survey the efficient removal of fat, oil, and grease in Shiraz municipal wastewater treatment plant. Jentashapir Journal of Health Research, 5(6), 1–4.
  • 9. Halverson N.V. 2004. Review of constructed subsurface flow vs surface flow wetlands. Westinghouse Savvanah River Company.
  • 10. Gunawan I., Oktiawan W., Hadiwidodo M. 2013. Study capabilities vertical subsurface flow constructed wetlands in cull COD, nitrite and nitrate in leachate water. Journal of Environmental Engineering of Diponegoro University.
  • 11. Indrayani L. 2018. Pengolahan limbah cair industri batik sebagai salah satu percontohan IPAL batik di Yogyakarta. Ecothropic, 12(2), 173–184.
  • 12. ITRC. 2003. Technical and regulatory guidance document for constructed treatment wetland, Interstate Technology Regulatory Council.
  • 13. Jayaweera, M.W., Kasturiarachchi J.C, Kularatne R.K.A., Wijeyekoon S.L.J. 2008. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under Different nutrient conditions to Fe-removal mechanisms in ocnstructed wetlands. Journal of Environmental Management, 87, 450–460.
  • 14. Kamarudzaman A.N., Aziz R.A., Jalil M.F.A. 2011. Removal of Heavy metals from landfill leachate using horizontal and vertical subsurface flow constructed wetland planted with Limnocharis flava. International Journal of Civil and Environmental Engineer, 11(5), 73–77.
  • 15. Meng P., Pei H., Hu W., Shao Y., Li Z. 2014. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 157, 316–326.
  • 16. Melian J.A.H., Rodriguez A.J.M., Arana J., Diaz O.G., Henriquez J.J.G. 2010. Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological Engineering, 36, 891–899.
  • 17. Mthembu M.S., Odinga C.A., Swalaha F.M., Bux F. 2013. Constructed wetlands: A future alternative wastewater treatment technology. African Journal of Biotechnology, 12(29), 4542–4553.
  • 18. Mukimin A., Vistanty H., Zen N., Purwanto A., Wicaksono K.A. 2018. Bioequalization-electrocatalytic performance of integrated method for removal of pollutants hand-drawn batik wastewater. Journal of Water Process Engineering, 21, 77–83.
  • 19. Otieno A.O., Karuku G.N., Raude J.M., Koech O. 2017. Affectiveness of the horizontal, vertical and hybrid subsurface flow constructed wetland systems in polishing municipal wastewater. Environmental Management and Sustainable Development, 6(2), 158–173.
  • 20. Panrare A., Sohsalam P., Tondee T. 2015. Constructed wetland for sewage treatment and thermal transfer reduction. Energy Procedia, 79, 567–575.
  • 21. Parvati E., Purwanto A.D. 2017. Time series analysis of total suspended solid (TSS) using landsat data in coastal area berau, Indonesia. LAPAN, 61–70.
  • 22. Perdana M.C., Sutatnto H.B., Prihatmo G. 2018. Vertical subsurface flow (VSSF) constructed wetland for domestic wastewater treatment. IOP Conf. Series: Earth and Environmental Science, 148, 1–9.
  • 23. Peraturan Menteri Lingkungan Hidup Republik Indonesia. 2014. Wastewater Quality Standard. Permen LH RI, “No. 5Baku Mutu Air Limbah,” 2014.
  • 24. Peraturan Pemerintah Republik Indonesia. 2001. Water Quality Management and Water Pollution Control. PP RI, “No. 82Pengelolaan kualitas air dan pengendalian pencemaran air,” 2001.
  • 25. Rashidi H.A., Sulaiman N.M., Hashim NA., Hassan C.R.C. 2013. Synthetic batik wastewater pretreatment progress by using physical treatment. Advanced Materials Research, 627, 394–398.
  • 26. Sasmaz A., Obek E., Hasar H. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.
  • 27. Sembiring E.T.J., Muntalif B.S. 2013. Optimization of leachate treatment efficiency by using constructed wetland. Journal of Environmental Engineering, 17(2), 1–10.
  • 28. Sharma H.B., Sinha P.R. 2016. Performance analysis of vertical flow constructed wetland to treat domestic wastewater using two different filter media and canna as a plant. Indian Journal of Science and Technology, 9(44), 1–7.
  • 29. Shelef O., Gross A., Rachmilevitch S. 2013. Role of plants in a constructed wetland: Current and new perspectives. Water, 5, 405–419.
  • 30. Sindilariu P.D., Brinker A., Reiter R. 2009. Factors influencing the efficiency of constructed wetlands used for the treatment of intensive trout farm effluent. Ecological Engineering, 35, 711–722.
  • 31. Steelyana E. 2012. Batik : A beautiful culture preserve cultural heritage that ecomonic development and support in indonesia. Inktomi Business Review, 116–130.
  • 32. Sutrisno., Wulandari D. 2018. Multivariate analysis of variance (MANOVA) for enriching educational research results. AKSIOMA, 9(1), 37–53.
  • 33. Stein O.R., Hook P.B. 2005. Temperature, plants, and oxygen: How does season affect performance of constructed wetland ?. Journal of Environmental Science and Health, 40, 1331–1342.
  • 34. Tangahu B.V., Ningsih D.A., Kurniawan S.B., Imron M.F. 2019. Study of BOD and COD in batik wastewater using Scipus grossus and Iris pseudacorus with intermitten exposure system. Journal of Ecological Engineering, 20(5), 130–134.
  • 35. UN-Habitat. 2008. Constructed wetland manual. Kathmandu: UN-Habitat Water for Asian Cities Program.
  • 36. Wu H., Zhang J., Ngo H.H., Guo w., Hu Z., Liang S., Fan J., Liu H. 2015. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 1–8.
  • 37. Yadav A.K., Dash P., Mohanty A., Abbassi R., Mishra B.K. 2012. Performance assement of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecological Engineering,47, 126–131.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b09ea541-a361-4820-98ab-dac94130b239
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.