Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This paper aims to advance knowledge in the methodology of environmental life cycle assessment (LCA) for vehicles and to discern potential environmental and health burdens associated with combustion and electric vehicles. Methodology: A systematic review was conducted using the Scopus database, with a focus on papers published between 2005 and November 2023. The search was refined to include only English-language publications investigating passenger vehicles, resulting in a final corpus of 75 studies. Results: The review revealed that LCA conclusions for automotive vehicles can vary widely depending on the specific study's scope, methodology, and goals. Many studies emphasize the need for a holistic approach considering various drive technologies, production aspects, and local geographical conditions. Theoretical contribution: This paper contributes to the field of environmental science and sustainability by synthesizing the current state of knowledge on the environmental impact of vehicles across their entire life cycle. The findings highlight the importance of a nuanced and comprehensive approach to understanding and mitigating the environmental externalities of transportation. Practical implications: The insights from this review can inform policymakers, manufacturers, and consumers in their decisions regarding sustainable transportation solutions. By understanding the key areas of concern and improvement opportunities across the entire life cycle of vehicles, stakeholders can work towards a more environmentally responsible and sustainable transportation system.
Rocznik
Tom
Strony
53--71
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- Department of Automotive Engineering and Transport, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Ave. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
- Aboushaqrah, N. N. M., Cihat Onat, N., Küçükvar, M., Hamouda, A. M. S., Kuşakçı, A. O., & Ayvaz, B. (2021). Selection of alternative fuel taxis: a hybridized approach of life cycle sustainability assessment and multi-criteria decision making with neutrosophic sets. International Journal of Sustainable Transportation, 16(9), 833-846. https://doi.org/10.1080/15568318.2021.1943075
- Andersson, Ö., & Börjesson, P. (2021). The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications. Applied Energy, 289, 116621. https://doi.org/10.1016/j.apenergy.2021.116621
- Asaithambi, G., Treiber, M., & Kanagaraj, V. (2019). Life Cycle Assessment of Conventional and Electric Vehicles. In D. Szalay, A. Gosztom, L. Sípos, & T. Taligás (Eds.), International Climate Protection (pp. 161-168). Springer. https://doi.org/10.1007/978-3-030-03816-8_21
- Bauer, C., Hofer, J., Althaus, H.-J., Del Duce, A., & Simons, A. (2015). The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Applied Energy, 157, 871-883. https://doi.org/10.1016/j.apenergy.2015.01.019
- Bouter, A., Hache, E., Ternel, C., & Beauchet, S. (2020). Comparative environmental life cycle assessment of several powertrain types for cars and buses in France for two driving cycles: “worldwide harmonized light vehicle test procedure” cycle and urban cycle. The International Journal of Life Cycle Assessment, 25, 1545-1565. https://doi.org/10.1007/s11367-020-01756-2
- Buberger, J., Kersten, A., Kuder, M., Eckerle, R., Weyh, T., & Thiringer, T. (2022). Total CO2-equivalent life-cycle emissions from commercially available passenger cars. Renewable and Sustainable Energy Reviews, 159(1364-0321), 112158. https://doi.org/10.1016/j.rser.2022.112158
- Cox, B., Bauer, C., Mendoza Beltran, A., van Vuuren, D. P., & Mutel, C. L. (2020). Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios. Applied Energy, 269, 115021. https://doi.org/10.1016/j.apenergy.2020.115021
- Danilecki, K., Smurawski, P., & Urbanowicz, K. (2023). Optimization of Car Use Time for Different Maintenance and Repair Scenarios Based on Life Cycle Assessment. Applied Sciences, 13(17), 9843-9843. https://doi.org/10.3390/app13179843
- El Hafdaoui, H., Jelti, F., Khallaayoun, A., Jamil, A., & Ouazzani, K. (2024). Energy and environmental evaluation of alternative fuel vehicles in Maghreb countries. Innovation and Green Development, 3(1), 100092-100092. https://doi.org/10.1016/j.igd.2023.100092
- Elgowainy, A., Burnham, A., Wang, M., Molburg, J., & Rousseau, A. (2009). Well-To-Wheels Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles. SAE International Journal of Fuels and Lubricants, 2(1), 627-644. https://doi.org/10.4271/2009-01-1309
- Franzò, S., & Nasca, A. (2021). The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. Journal of Cleaner Production, 315, 128005. https://doi.org/10.1016/j.jclepro.2021.128005
- Fusco Rovai, F., da Cal Seixas, S. R., & Keutenedjian Mady, C. E. (2023). Regional energy policies for electrifying car fleets. Energy, 278, 127908-127908. https://doi.org/10.1016/j.energy.2023.127908
- Heidary, H., El-Kharouf, A., Steinberger-Wilckens, R., Bozorgmehri, S., Salimi, M., & Golmohammad, M. (2023). Life cycle assessment of solid oxide fuel cell vehicles in a natural gas producing country; comparison with proton electrolyte fuel cell, battery and gasoline vehicles. Sustainable Energy Technologies and Assessments, 59, 103396. https://doi.org/10.1016/j.seta.2023.103396
- ISO 14000: A series of international, voluntary environmental management standards, guides and technical reports developed by the International Organization for Standardization (ISO).
- ISO 14040:2006 - Environmental management Life cycle assessment Principles and framework.
- ISO 14044:2006 - Environmental management Life cycle assessment Requirements and guidelines.
- Ivanov, R., Evtimov, I., Ivanova, D., Staneva, G., Kadikyanov, G., & Sapundzhiev, M. (n.d.). Possibilies for Improvement the Ecological Effect of Battery Electric Vehicles Using Renewable Energy. Proceedings of 7th International Conference on Energy Efficiency, and Agricultural Engineering (EE&AE), (10.1109/EEAE49144.2020.9279077), 1-5. 12-14 November 2020, Ruse, Bulgaria .
- Jursova, S., Burchart-Korol, D., & Pustejovska, P. (2019). Carbon Footprint and Water Footprint of Electric Vehicles and Batteries Charging in View of Various Sources of Power Supply in the Czech Republic. Environments, 6(3), 38. https://doi.org/10.3390/environments6030038
- Karabasoglu, O., & Michalek, J. (2013). Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains. Energy Policy, 60, 445-461. https://doi.org/10.1016/j.enpol.2013.03.047
- Koroma, M. S., Costa, D., Philippot, M., Cardellini, G., Hosen, M. S., Coosemans, T., & Messagie, M. (2022). Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management. Science of the Total Environment, 831, 154859. https://doi.org/10.1016/j.scitotenv.2022.154859
- Koroma, M. S., Costa, D., Puricelli, S., & Messagie, M. (2023). Life Cycle Assessment of a novel functionally integrated e-axle compared with powertrains for electric and conventional passenger cars. Science of the Total Environment, 904, 166860-166860. https://doi.org/10.1016/j.scitotenv.2023.166860
- Kucukvar, M., Onat, N. C., Kutty, A. A., Abdella, G. M., Bulak, M. E., Ansari, F., & Kumbaroglu, G. (2022). Environmental efficiency of electric vehicles in Europe under various electricity production mix scenarios. Journal of Cleaner Production, 335, 130291. https://doi.org/10.1016/j.jclepro.2021.130291
- Li, S., Cao, Q., Li, J., & Gao, Y. (2018). Fuel Cycle Environmental Assessment for Electric Vehicles in China. IOP Conference Series: Earth and Environmental Science, 186, 012024. https://doi.org/10.1088/1755-1315/186/4/012024
- Li, Y., Ha, N., & Li, T. (2019). Research on Carbon Emissions of Electric Vehicles throughout the Life Cycle Assessment Taking into Vehicle Weight and Grid Mix Composition. Energies, 12(19), 3612. https://doi.org/10.3390/en12193612
- Liu, J., Daigo, I., Panasiuk, D., Dunuwila, P., Hamada, K., & Hoshino, T. (2022). Impact of recycling effect in comparative life cycle assessment for materials selection - A case study of light-weighting vehicles. Journal of Cleaner Production, 349, 131317. https://doi.org/10.1016/j.jclepro.2022.131317
- Małek, A., Karowiec, R., & Jóżwik, K. (2023). A review of technologies in the area of production, storage and use of hydrogen in the automotive industry. The Archives of Automotive Engineering - Archiwum Motoryzacji, 102(4), 41-67. https://doi.org/10.14669/am/177038
- Mayyas, A., Omar, M., Hayajneh, M., & Mayyas, A. R. (2017). Vehicle’s lightweight design vs. electrification from life cycle assessment perspective. Journal of Cleaner Production, 167, 687-701. https://doi.org/10.1016/j.jclepro.2017.08.145
- Messagie, M., Boureima, F., Matheys, J., Sergeant, N., Timmermans, J-M., Macharis, C., & Van Mierlo, J. (2010). Environmental performance of a battery electric vehicle: a descriptive Life Cycle Assessment approach. World Electric Vehicle Journal, 4(4), 782-786. https://doi.org/10.3390/wevj4040782
- Messagie, M., Boureima, F.-S., Coosemans, T., Macharis, C., & Mierlo, J. (2014). A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels. Energies, 7(3), 1467-1482. https://doi.org/10.3390/en7031467
- Mitropoulos, L. K., Prevedouros, P. D., & Kopelias, P. (2017). Total cost of ownership and externalities of conventional, hybrid and electric vehicle. Transportation Research Procedia, 24, 267-274. https://doi.org/10.1016/j.trpro.2017.05.117
- Mohammadi Ashnani, M. H., Miremadi, T., Johari, A., & Danekar, A. (2015). Environmental Impact of Alternative Fuels and Vehicle Technologies: A Life Cycle Assessment Perspective. Procedia Environmental Sciences, 30, 205-210. https://doi.org/10.1016/j.proenv.2015.10.037
- Moreira, J. R., Pacca, S. A., & Goldemberg, J. (2022). The reduction of CO2e emissions in the transportation sector: Plug-in electric vehicles and biofuels. Renewable and Sustainable Energy Transition, 2, 100032. https://doi.org/10.1016/j.rset.2022.100032
- Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14. https://doi.org/10.1016/j.trd.2017.07.012
- Nandola, Y., Krishna, U., Pramanik, S., Himabindu, M., & Ravikrishna, R. V. (2023). Well-to-Wheel Analysis of Energy Efficiency & CO2 emissions for Hybrids & EVs in India: Current Trends & Forecasting for 2030. Research Square. https://doi.org/10.21203/rs.3.rs-3086492/v1
- Noshadravan, A., Cheah, L., Roth, R., Freire, F., Dias, L., & Gregory, J. (2015). Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles. The International Journal of Life Cycle Assessment, 20(6), 854-864. https://doi.org/10.1007/s11367-015-0866-y
- Notter, D. A., Gauch, M., Widmer, R., Wäger, P., Stamp, A., Zah, R., & Althaus, H.-J. (2010). Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environmental Science & Technology, 44(17), 6550-6556. https://doi.org/10.1021/es903729a
- Onat, N., Kucukvar, M., & Tatari, O. (2014). Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles. Sustainability, 6(12), 9305-9342. https://doi.org/10.3390/su6129305
- Ou, X., Yan, X., & Zhang, X. (2010). Using coal for transportation in China: Life cycle GHG of coal-based fuel and electric vehicle, and policy implications. International Journal of Greenhouse Gas Control, 4(5), 878-887. https://doi.org/10.1016/j.ijggc.2010.04.018
- Patterson, J., Gurr, A., Marion, F., & Williams, G. (2012). Strategic Selection of Future EV Technology based on the Carbon Payback Period. World Electric Vehicle Journal, 5(4), 825-835. https://doi.org/10.3390/wevj5040825
- Paulino, F., Pina , A., & Baptista , P. (2018). Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach. Environments, 5(2), 21. https://doi.org/10.3390/environments5020021
- Pero, F. D., Delogu, M., & Pierini, M. (2018). Life Cycle Assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Structural Integrity, 12, 521-537. https://doi.org/10.1016/j.prostr.2018.11.066
- Petrauskienė, K., Galinis, A., Kliaugaitė, D., & Dvarionienė, J. (2021). Comparative Environmental Life Cycle and Cost Assessment of Electric, Hybrid, and Conventional Vehicles in Lithuania. Sustainability, 13(2), 957. https://doi.org/10.3390/su13020957
- Qiao, Q., Zhao, F., Liu, Z., Jiang, S., & Hao, H. (2017). Comparative Study on Life Cycle CO 2 Emissions from the Production of Electric and Conventional Vehicles in China. Energy Procedia, 105(2017), 3584-3595. https://doi.org/10.1016/j.egypro.2017.03.827
- Rapa, M., Gobbi, L., & Ruggieri, R. (2020). Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources. Energies, 13(23), 6292. https://doi.org/10.3390/en13236292
- Rybaczewska-Blażejowska, M., & Palekhov, D. (2018). Life Cycle Assessment (LCA) in Environmental Impact Assessment (EIA): principles and practical implications for industrial projects. Management, 22(1), 138-153. https://doi.org/10.2478/manment-2018-0010
- Safarian, S. (2022). Environmental and energy impacts of battery electric and conventional vehicles: A study in Sweden under recycling scenarios. Fuel Communications, 14, 100083. https://doi.org/10.1016/j.jfueco.2022.100083
- Šarkan, B., Loman, M., & Harantová, V. (2023). Identification of places with deteriorated air quality in city of Žilina in relation to road transport. The Archives of Automotive Engineering - Archiwum Motoryzacji, 102(4), 68-90. https://doi.org/10.14669/am/176958
- Soo, V. K., Compston, P., & Doolan, M. (2015). Interaction between New Car Design and Recycling Impact on Life Cycle Assessment. Procedia CIRP, 29, 426-431. https://doi.org/10.1016/j.procir.2015.02.055
- Subramanian Senthilkannan Muthu. (2020). Assessing the environmental impact of textiles and the clothing supply chain. (https://doi.org/10.1016/C2019-0th-00463-3rd ed.). Elsevier.
- Szumska, E. M. (2021). Comparative Life Cycle Analysis of Hybrid and Conventional Drive Vehicles in Various Driving Conditions. Communications - Scientific Letters of the University of Zilina, 23(4), D34-D41. https://doi.org/10.26552/com.c.2021.4.d34-d41
- Tang, Y., Cockerill, T. T., Pimm, A. J., & Yuan, X. (2021). Reducing the life cycle environmental impact of electric vehicles through emissions-responsive charging. IScience, 24(12), 103499. https://doi.org/10.1016/j.isci.2021.103499
- Timmermans, J.-M., Matheys, J., Mierlo, J. van, & Lataire, P. (2006). Environmental rating of vehicles with different fuels and drive trains: a univocal and applicable methodology. European Journal of Transport and Infrastructure Research, 6(4). https://doi.org/10.18757/ejtir.2006.6.4.3455
- Van den Bossche, P., Vergels, F., Van Mierlo, J., Matheys, J., & Van Autenboer, W. (2006). SUBAT: An assessment of sustainable battery technology. Journal of Power Sources, 162(2), 913-919. https://doi.org/10.1016/j.jpowsour.2005.07.039
- Van Mierlo, J., Messagie, M., & Rangaraju, S. (2017). Comparative environmental assessment of alternative fueled vehicles using a life cycle assessment. Transportation Research Procedia, 25, 3435-3445. https://doi.org/10.1016/j.trpro.2017.05.244
- Wong, E. Y. C., Ho, D. C. K., So, S., Tsang, C.-W., & Chan, E. M. H. (2021). Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model - A Comparative Study. Sustainability, 13(9), 4872. https://doi.org/10.3390/su13094872
- Yang, F., Xie, Y., Deng, Y., & Yuan, C. (2018). Considering Battery Degradation in Life Cycle Greenhouse Gas Emission Analysis of Electric Vehicles. Procedia CIRP, 69, 505-510. https://doi.org/10.1016/j.procir.2017.12.008
- Zheng, G., & Peng, Z. (2021). Life Cycle Assessment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit). Energy Reports, 7, 1203-1216. https://doi.org/10.1016/j.egyr.2021.02.039
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b09dca76-365b-4175-9e8b-0d24705c8f78