PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activated biocarbons obtained from lignocellulosic precursors as potential adsorbents of ammonia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The investigated materials were new biocarbons: FC (Fir Cone), FS (Fir Sawdust), FB (Fir Bark), BS (Birch Sawdust), BB (Birch Bark), AS (Acacia Sawdust), AB (Acacia Bark), OS (Oak Sawdust), OB (Oak Bark), HS (Hornbeam Sawdust)) obtained via pyrolysis and CO2 activation of wood waste (lignocellulosic biomass). In order to study the influence of the carbon precursor on the physicochemical properties of biocarbons there were used the precursors: cones, sawdust, and bark of various tree species. The obtained adsorbents were characterized based on the results, of the N2 adsorption, scanning electron microscopy (SEM), elemental analysis (CHNS), thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA), Fourier Transform Infrared Spectroscopy FT-IR (ATR) and the Boehm’s titration method as well as pHpzc (the point of zero charge). The adsorption capacity and the temperature-programmed desorption (TPD) of ammonia were also studied. The obtained activated biocarbons were characterized by the large specific surface area (515 to 1286 m2/g) and the total pore volume (0.27 to 0.46 cm3/g) as well as the well-developed microporous structure (76 - 90%). The maximum NH3 adsorption capacity of the activated biocarbon was determined to be 2.93 mmol/g (FC (Fir Cone)). These results prove that the lignocellulosic precursors are appropriate for preparation of environmentally friendly and cost-effective biocarbons.
Rocznik
Strony
art. no. 169835
Opis fizyczny
Bibliogr. 49 poz., fot., tab., wykr.
Twórcy
  • Jan Kochanowski University, Faculty of Exact and Natural Sciences, Institute of Chemistry, Uniwersytecka Str. 7, 25-406 Kielce, Poland
  • Maria Curie-Sklodowska University, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
Bibliografia
  • AL-DEGS, Y.S., EL-BARGHOUTHI, M.I., EL-SHEIKH, A.H., WALKER, G.M., 2008. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm. 77, 16–23.
  • BALT, M., 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway. A review. Energ. Conver. Manage, 52, 858-875.
  • BASHARNAVAZ, H., HABIBI-YANGJEH, A., PIRHASHEMI, M., 2020. Graphitic carbon nitride as a fascinating adsorbent for toxic gases: A mini-review, Chem. Phys. Lett. 754, 137676.
  • BAZAN-WOŹNIAK, A., NOWICKI, P., PIETRZAK, R., 2017. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. J. Clean. Prod. 152, 211-222.
  • BOEHM, H.P., 2002. Surface oxides on carbon and their analysis: A critical assessment. Carbon 40, 145–149.
  • BOGUMIŁ, D. Wpływ metod obróbki wstępnej biomasy na wydajność otrzymywania biogazu. 2016. Stud. Ecolog. Bioethic. 14, 191-203.
  • BORHAN, A., TAHA, M.F., HAMZAH, A.A., 2014. Characterization of activated carbon from wood sawdust prepared via chemical activation using potassium hydroxide. Adv. Mater. Res. 832, 132-137.
  • BRUNAUER, S., EMMETT, P.H., TELLER, E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309-319.
  • BŘENDOVÁ, K., SZÁKOVÁ, J., LHOTKA, M., KRULIKOVSKÁ, T., PUNČOCHÁŘ, M., TLUSTOŠ, P., 2017. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: Predictable for the fate of biochar in soil? Environ. Geochem. Health 39, 1381-1395.
  • CALVELO PEREIRA, R., KAAL, J., CAMPS ARBESTAIN, M., PARDO LORENZO, R., AITKENHEAD, W., HEDLEY, M., MSCÍAS, F., HINDMARSH, J., MACIÁ-AGULLÓ, J.A., 2011. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 42, 1331–1342.
  • CÁRDENAS-AGUIAR, E., GASCÓ, G., PAZ-FERREIRO, J., MÉNDEZ, A., 2019. Thermogravimetric analysis and carbon stability of chars produced from slow pyrolysis and hydrothermal carbonization of manure waste. J. Anal. Appl. Pyrol. 140 434–443.
  • CHEN, Y., LI, L., LI, J., OUYANG, K., YANG, J., Ammonia capture and flexible transformation of M-2(INA) (M=Cu, Co, Ni, Cd) series materials. J. Hazard. Mater. 306, 340–347 (2016).
  • CHO, D.W., KIM, S. TSANG, Y.F., SONG, H., 2019. Preparation of nitrogen-doped Cu-biochar and its application into catalytic reduction of p-nitrophenol. Environ. Geochem. Health 41, 1729-1737.
  • CONTESCU C.I., ADHIKARI, S.P., GALLEGO, N.C., EVANS, N.D., BISS, B.E., 2018. Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass. J. Carbon Res. 4, 51HUANG, C.C., LI, H.S., CHEN, C.H., 2008. Effect of surface acidic oxides of activated carbon on adsorption of ammonia. J. Hazard. Mater. 159, 523–527.
  • FIGUEIREDO, J.L., PEREIRA, M.F.R., FREITAS, M.M.A., ÓRFAO, J.J.M., 1999, Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389.
  • HELMINEN, J., HELENIUS, J., PAATERO, E., TURUNEN, I., 2001. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K. J. Chem. Eng. Data 46, 391–399.
  • JAGIELLO, J., OLIVIER, J.P., 2013. 2D-NLDFT Adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80.
  • JAGIELLO, J., OLIVIER, J.P., 2013a. Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19, 777–783.
  • JEDYNAK, K., CHARMAS, B., 2021. Preparation and Characterization of physicochemical properties of spruce cone biochars activated by CO2. Materials 14, 3859.
  • KRUK, M., JARONIEC, M., 2001. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183.
  • LALAK, J. KASPRZYCKA, A., MURAT, A., PAPROTA, E.M. TYS, J., 2014. Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej. Acta Agrophys. 21, 51-62.
  • LIM, C.K., BAY, H.H., NOEH, C.H., ARIS, A., MAJID, Z.A., IBRAHIM, Z., 2013. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm. kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 20, 7243–7255.
  • LIU, C. Y., AIKA, K., 2003. Effect of surface oxidation of active carbon on ammonia adsorption. Bull. Chem. Soc. Jpn. 76, 1463–1468.
  • MA, R., MA, Y., GAO, Y., CAO, J., 2020. Preparation of micro mesoporous carbon from seawater impregnated sawdust by low temperature one step CO2 activation for adsorption of oxytetracycline. SN Appl. Sci. 2, 171-185.
  • MARCINIAK, M., GOSCIANSKA, J., PIETRZAK, R., 2018. Physicochemical characterization of ordered mesoporous carbons functionalized by wet oxidation. J. Mater. Sci., 53, 5997–6007.
  • MUKOME, F.N.D., ZHANG, X., LUCAS, C.R.S., SIX, J., PARIKH, S.J., 2013. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agric. Food. Chem. 61, 2196–2204.
  • NOR, N.M.; LAU, L.C., LEE, K.T., MOHAMED, A.R., 2013. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—A review. J. Environ. Chem. Eng. 1, 658–666.
  • NOWICKI, P., KRUSZYŃSKA, I. PRZEPIÓRSKI, J., PIETRZAK, R., 2013. The effect of chemical activation method on properties of activated carbons obtained from pine cones. Cent. Eur. J. Chem., 11, 78–85.
  • NOWICKI, P., GRUSZCZYŃSKA, K., URBAN, T., WIŚNIEWSKA, M., 2022. Activated biochars obtained from post-fermentation residue as potential adsorbents of organic pollutants from the liquid phase. Physicochem. Probl. Miner. Process 58, 146357.
  • CARDENAS-PEÑA, A.M., IBANEZ, J.G., VASQUEZ-MEDRANO, R., 2012. Determination of the point of zero charge for electrocoagulation precipitates from an iron anode, Int. J. Electrochem. Sci. 7, 6142-6153.
  • RIVERA-UTRILLA, J., BAUTISTA-TOLEDO, I., FERRO-GARCÍA, M.A., MORENO-CASTILLA, C., 2001. Activated carbon surface modifications by ad-sorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 76, 1209–1215.
  • RO, K.S., LIMA, I.M., REDDY, G.B., JACKSON, M.A., GAO, B., 2015. Removing gaseous NH3 using biochar as an adsorbent. Agriculture 5, 991–1002.
  • ROBAK, K., BALCEREK, M., 2017. Rola obróbki wstępnej biomasy lignocelulozowej w produkcji bioetanolu II generacji. Acta Agroph. 24, 301-318.
  • RODRIGUES, C.C., MORAES JR., D., NÓBREGA, S.W., BARBOZA, M.G., 2007. Ammonia adsorption in a fixed bed of activated carbon. Biores. Technol. 98, 886–891.
  • RONSSE, F., VAN HECKE, S., DICKINSON, D., PRINS, W., 2012. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Glob. Chang. Biol. Bioenergy 5, 104–115.
  • SAAD, M., BIAŁAS, A., GRZYWACZ, P., CZOSNEK, C., SAMOJEDEN, B., MOTAK, M., 2020. Selective catalytic reduction of NO with ammonia at low temperature over Cu-promoted and N-modified activated carbon. Chem. Process Eng. 41, 59–67.
  • SALETNIK, B.; ZAGUŁA, G.; GRABEK-LEJKOo, D.; KASPRZYK, I.; BAJCAR, M.; CZERNICKA, M.; PUCHALSKI, C., 2017. Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst). Environ. Earth Sci. 76, 574–584.
  • SAMOJEDEN, B., GRZYBEK, T., 2016. The influence of the promotion of N-modified activated carbon with iron on NO removal by NH3-SCR (Selective catalytic reduction). Energy 116, 1484-1491.
  • SAMOJEDEN, B., GRZYBEK, T., 2017. The influence of nitrogen groups introduced onto activated carbons by high or low-temperature NH3 treatment on SO2 sorption capacity. Ads. Sci. Technol. 35, 572–581.
  • SAYAGO, I., SANTOS, H., HORRILLO, M.C., ALEIXANDRE, M., FERNÁNDEZ, M.J., TERRADO, E., TACCHINI, I., AROZ, R., MASER, W.K., BENITO, A.M., MARTÍNEZ, M.T., GUTIÉRREZ, J. MUÑOZ, E., 2008. Carbon nanotube networks as gas sensors for NO2 detection. Talanta 77, 758-764.
  • SEN, T.K., AFROZE, S., ANG, H.M., 2011. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiate. Water Air Soil Pollut. 218, 499–515.
  • SPOKAS, K.A., CANTRELL, K.B., NOVAK, J.M., ARCHER, D.W., IPPOLITO, J.A., COLLINS, H.P., BOATENG, A.A., LIMA, I.M., LAMB, M.C., MCALOON, A.J., LENTZ, R.D., NICHOLS, K.A., 2012. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 41, 973–989.
  • TAKAYA, C.A.; PARMAR, K.R.; FLETCHER L.A.; ROSS, A.B., 2019. Biomass-derived carbonaceous adsorbents for trapping ammonia. Agriculture 9, 16–30.
  • VAUGHN, S.F., KENAR, J.A., THOMPSON, A.R., PETERSON, S.C., 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops. Prod. 51, 437-443.
  • WIŚNIEWSKA, M., MARCINIAK, M., GĘCA, M., HERDA, K., PIETRZAK, R., NOWICKI, P., 2022. Activated biocarbons obtained from plant biomass as adsorbents of heavy metal ions, Materials, 15, 5856.
  • YANG, H., WANG, Y., LIU, Z., LIANG, D., LIU, F., ZHANG, W., DI, X., WANG, C., HO, S.-H., CHEN, W.-H., 2017. Enhanced thermal conductivity of waste sawdust based composite phase change materials with expanded graphite for thermal energy storage. Bioresour. Bioprocess. 4 , 1–12.
  • YEOM, C., KIM, Y., 2017. Adsorption of ammonia using mesoporous alumina prepared by a templating method. Environ. Eng. Res. 22, 401–406.
  • ZIĘZO, M., CHARMAS, B., JEDYNAK, K., HAWRYLUK, M., KUCIO, K., 2020. Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid(V). Appl. Nanosci. 10/12, 4703-4716.
  • ZHAO, S-X., NA, T., WANG, X-D., 2017. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10, 1293.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b09bf241-8f3b-41a8-a477-898829e88e66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.