Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Mechanomyography for hand impedance recognition during teleoperation
Języki publikacji
Abstrakty
W artykule przedstawiamy ekonomiczny zestaw do mierzenia sygnałów mechanomiograficznych, wykorzystujący mikrofon elektretowy umieszczony w zaprojektowanej do tego celu obudowie. Zestaw został skonstruowany w celu określenia sztywności dłoni operatora, który za pomocą rękawicy sensorycznej steruje manipulatorem. Urządzenie stanowi uzupełnienie systemu do teleoperacji chwytakami zręcznymi [25, 24], dostarczając dodatkowych informacji o stanie sztywności ręki operatora, co można wykorzystać do ustalania impedancji chwytaka wielopalczastego. Przedstawiamy budowę urządzenia, sposób przetwarzania sygnału oraz porównujemy algorytmy uczenia maszynowego pozwalające na wykorzystanie urządzenia do rozpoznawania sztywności dłoni. Efektem pracy systemu jest binarne rozpoznawanie sztywności (sztywny, rozluźniony) z jakością klasyfikacji 94% przy dowolnym ruchu dłoni. Zaprojektowane urządzenie oraz algorytmy udostępnione są na otwartej licencji i dostępne są w repozytorium projektu.
The article presents a low cost set for measuring mechanomyographic signals to determine the stiffness of the operator's hand during remote control of manipulator with a dextrous gripper. The device complements the system for teleoperation initially containing sensor glove and LeapMotion vision, and now providing additional information about the operator's hand condition, which can be used to determine the impedance of a multi-fingered gripper. We present the construction of the device, signal acquisition, and processing, the machine learning algorithm that provides the main functionality of the device: recognizing hand stiffness without the need for calibration with any external measurement tools. The output of the system is the binary recognition of the operator's hand stiffness (rigid, non-rigid) with the maximum quality of classification of around 94% regardless of sensor placement or movement of the hand.
Rocznik
Tom
Strony
523--534
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Politechnika Łódzka, Instytut Automatyki
autor
- Politechnika Łódzka, Instytut Automatyki
Bibliografia
- [1] Arash Ajoudani et al. Exploring teleimpedance and tactile feedback for intuitive control of the pisa/iit softhand. IEEE transactions on haptics, 2014, wolumen 7, numer 2, s. 203-215.
- [2] Arash Ajoudani, Nikolaos G. Tsagarakis, Antonio Bicchi. Tele-impedance: Preliminary results on measuring and replicating human arm impedance in tele operated robots. In: Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on. Proceedings. IEEE, 2011, s. 216-222.
- [3] Loai AT AI Abeach, Samia Nefti-Meziani, Steve Davis. Design of a variable stiffness soft dexterous gripper. Soft robotics, 2017, wolumen 4, numer 3, s. 274-284.
- [4] Travis W Beck et al. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomedical engineering on line, 2005, wolumen 4, numer 1, s. 67.
- [5] Scott Day. Important factors in surface emg measurement. Bortec Biomedical Ltd publishers, 2002, s. 1-17.
- [6] David W Franklin et al. Endpoint stiffness 9f the arm is directionally tuned to in the environment. Journal of Neuroscience, 2007, wolumen 27, numer 29, s. 7705-7716.
- [7] Sandra G Hart, Lowell E Staveland. Development of nasa-tlx (task load index): Results of empirical and theoretical research. In: Advances in psychology, wolumen 52, s. 139-183. Elsevier 1988.
- [8] Hannes Hoppner et al. Key insights into hand biomechanics: Human grip stiffness can be decoupled from force by cocontraction and predicted from electromyography. Frontiers in neurorobotics, 2017, wolumen 11, s. 17.
- [9] Md Anamul Islam et al. Mechanomyography sensor development, related signal processing, and applications: a systematic review. IEEE Sensors Journal, 2013, wolumen 13, numer 7, s. 2499-2516.
- [10] E. Jezierski. Low cost impedance controller for robotic gripper drive with dc motor. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR). Proceedings, Aug, 2015, s. 806-811.
- [11] Ning Jiang, Kevin B Englehart, Philip A Parker. Extracting simultaneous and proportional neural control information for multiple-dof prostheses from the surface electromyographic signal. IEEE Transactions on Biomedical Engineering, 2009, wolumen 56, numer 4, s. 1070-1080.
- [12] Kazuo Kiguchi, Yosbiaki Hayashi. An emg-based control for an upper-limb power-assist exoskeleton robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, wolumen 42, numer 4, s. 1064-1071.
- [13] Eddy Krueger et al. Advances and perspectives of mechanomyography. Revista Brasileira de Engenharia Biomedica, 2014, wolumen 30, numer 4, s. 384-401.
- [14] Rhianne Lopez, T Claire Davies. The effect of surface electromyography placement on muscle activation amplitudes and timing. In: Student Conference (ISC), 2016 IEEE EMBS International. Proceedings. IEEE, 2016, s. 1-4.
- [15] Martin Yung-En Ma. Mmg sensor for muscle activity detection-low cost design, implementation and experimentation, 2009.
- [16] Mohammadreza Asghari Oskoei, Huosheng Hu. Evaluation of support vector machines in upper limb motion classification using myoelectric signal. In: 14th International Conference on Biomedical Engineering: ICBME 2008. Proceedings, 2008.
- [17] Bart Peerdeman et al. Myoelectric forearm prostheses: state of the art from a user-centered perspective. Journal of Rehabilitation Research & Development, 2011, wolumen 48, numer 6.
- [18] J Silva et al. Optimization of the signal-to-noise ratio of silicon-embedded microphones for mechanomyography. In: Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on. Proceedings. IEEE, 2003. Wolumen 3, s. 1493-1496.
- [19] Jorge Silva, Tom Chau. Coupled microphone-accelerometer sensor pair for dynamic noise reduction in mmg signal recording. Electronics Letters, 2003, wolumen 39, numer 21, s. 1496-1498.
- [20] Jorge Silva, Winfried Heim, Tom Chau. A self-contained, mechanomyography-driven externally powered prosthesis. Archives of physical medicine and rehabilitation, 2005, wolumen 86, numer 10, s. 2066-2070.
- [21] Wu Ting et al. Eeg feature extraction based on wavelet packet decomposition for brain computer interface. Measurement, 2008, wolumen 41, numer 6, s. 618-625.
- [22] Andrzej Wołczowski, Michal Błędowski, Jerzy Witkowski. System do rejestracji sygnałów EMG i MMG dla sterowania bioprotezą dłoni. 2016, wolumen 1.
- [23] I. Zubrycki. Ros package for mechanomyography. https://github.com/AdoHaha/mechanomiography_node.
- [24] I. Zubrycki, G. Granosik. Using integrated vision systems: three gears and leap motion, to control a 3-finger dexterous gripper. In: Recent Advances in Automation, Robotics and Measuring Techniques. Proceedings. Springer, 2014, s. 553-564.
- [25] I. Zubrycki, G. Granosik. Intuitive user interfaces for mobile manipulation tasks. Journal of Automation, Mobile Robotics & Intelligent Systems, 2015, wolumen 8, numer 1.
- [26] I. Zubrycki, G. Granosik, Novel haptic device using jamming principle for providing kinaesthetic feedback in glove-based control interface. Journal of Intelligent & Robotic Systems, 2016, s. 1-17.
- [27] Jorge M. Zuniga et al. The effects of skinfold thicknesses and innervation zone on the mechanomyographic signal during cycle ergometry. Journal of Electromyography and Kinesiology, 2011, wolumen 21, numer 5, s. 789-794.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b099ac0e-7730-400d-9c3c-41c92fd1b65c