PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intravascular stenting of atherosclerotic coronary arteries is a life-saving, widely used procedure in interventional cardiology. Adverse clinical outcomes such as restenosis high-light the importance of meeting the excellent biocompatibility by cardiovascular implants. Many attempts have been made to improve the safety profile of implant surface. We for the first time developed the photoactive intravascular titania-based nanomaterials for the application as cardiovascular stent coating. Photoactive biomaterial deposited on the cardiovascular stent surface demonstrated promising features, making it an excellent substrate for endothelial cells growth and proliferation. The biocompatibility of these coatings has been compared with 316L stainless steel surfaces typically used in commercial coronary stents production. The results of the study proved that the innovative titania- based coatings have better biocompatibility characteristics than the 316L stainless steel and in regard of its antithrombotic potential provided protection against restenosis. Further-more, the titania coating supported endothelial cells attachment and proliferation, and induced prolonged plasma recalcification time in comparison with stainless steel surface. Innovative photoactive titania coating can be an important factor to prevent the process of the restenosis in the place of implantation.
Twórcy
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Microbiology, Wroclaw University of Medicine, Wrocław, Poland
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wrocław, Poland
autor
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wrocław, Poland
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wrocław, Poland
autor
  • Balton Sp. Z o.o., Warsaw, Poland
  • Materials and Surface Science Institute, University of Limerick, Ireland
autor
  • Department and Clinic of Cardiology, Wroclaw University of Medicine, Wrocław, Poland
  • Department of Medical Emergency, Wroclaw University of Medicine, Wrocław, Poland
  • Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wrocław, Poland
Bibliografia
  • [1] Fox KA, Carruthers KF, Dunbar DR, Graham C, Manning JR, De Raedt H, et al. Underestimated and under-recognized: the late consequences of acute coronary syndrome (GRACE UK–Belgian Study). Eur Heart J 2010;31:2755–64.
  • [2] Ylä-Herttuala S, Fog Bentzon J, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, et al. Stabilisation of atherosclerotic plaques. Position Paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 2011;106(1):1–19.
  • [3] Dittmar K. Nanostructured titania coatings for drug-eluting medical implants;[Thesis no. 4478] 2009.
  • [4] Fine E, Zhang L, Fenniri H, Webster TJ. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents. Int J Nanomedicine 2009;4:91–7.
  • [5] Mikhalovska L, Chorna N, Lazarenko O, Haworth P, Sudre A, Mikhalovsky S. Inorganic coatings for cardiovascular stents: in vitro and in vivo studies. J Biomed Mater Res B Appl Biomater 2011;96(2):333–41.
  • [6] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37–8.
  • [7] Bennett JM, Pelletier E, Albrand G, Borongo JP, Lazarides B, Carniglia CK, et al. Comparison of the properties of titanium dioxide films prepared by various techniques. Appl Opt 1989;28(16):3303–17.
  • [8] Buvailo AI, Xing Y, Hines J, Dollahon N, Borguet E. TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl Mater Interfaces 2011;3(2):528–33.
  • [9] Kim S, Ghafoor K, Lee J, Feng M, Hong J, Lee DU, et al. Bacterial inactivation in water: DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis. Water Res 2013;47 (13):4403–11.
  • [10] Kim TY, Park SS, Kim SJ, Cho SY. A study of bactericidal effect and optimization of pathogenic bacteria using TiO2 photocatalyst. J Nanosci Nanotechnol 2011;11(2):1551–4.
  • [11] Haenle M, Fritsche A, Zietz C, Bader R, Heidenau F, Mittelmeier W, et al. An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties. J Mater Sci Mater Med 2011;22(2):381–7.
  • [12] Liu L, Miao P, Xu Y, Tian Z, Zou Z, Li G. Study of Pt/TiO2 nanocomposite for cancer-cell treatment. J Photochem Photobiol B 2010;98(3):207–10.
  • [13] Li Q, Wang X, Lu X, Tian H, Jiang H, Lv G, et al. The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 2009; 30(27):4708–15.
  • [14] Tseng YH, Sun DS, Wu WS, Chan H, Syue MS, Ho HC, et al. Antibacterial performance of nanoscaled visible-light responsive platinum-containing titania photocatalyst in vitro and in vivo. Biochim Biophys Acta 2013; 1830(6):3787–95.
  • [15] Castro AL, Nunes MR, Carvalho MD, Ferreira LP, Jumas JC, Costa FM, et al. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity. J Solid State Chem 2009;182:1838–45.
  • [16] Gumy D, Rincon AG, Hajdu R, Pulgarin C. Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO2 catalysts study. Solar Energy 2006;80:1376–81.
  • [17] Ince NH, Apikyan IG. Combination of activated carbon adsorption with light-enhanced chemical oxidation via hydrogen peroxide. Water Res 2000;34:4169–76.
  • [18] Li C, Jiang Z, Yao Z. Fabrication and characterization of multi-metal co-doped titania films for a water-splitting reaction. Dalton Trans 2010;39(44):10692–6.
  • [19] Brinker CJ. Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 1988;100(1–3):31–50.
  • [20] Doeuff S, Henry M, Sanchez C, Livage J. Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non-Cryst Solids 1987;89(1–2):206–16.
  • [21] Nakajima S, Lan L, Kanno S, Takao M, Yamamoto K, Eker A, et al. UV light-induced DNA damage and tolerance for the survival of nucleotide excision repair-deficient human cells. J Biol Chem 2004;279(45):46674–7.
  • [22] Strachan T, Read A. Chapter 18: cancer genetics. Human molecular genetics2nd ed. New York: Wiley-Liss; 1999.
  • [23] Image processing analysis in Java; November 2011, Available from: http://rsbweb.nih.gov/ij/.
  • [24] Fine E, Zhang L, Fenniri H, Webster TJ. Enhanced endothelial cell functions on rosette nantube-coated titanium vascular stents. Int J Nanomedicine 2009;4:91–7.
  • [25] Sethuraman A, Han M, Kane RS, Belfort G. Effect of surface wettability on the adhesion of proteins. Langmuir 2004; 20(18):7779–88.
  • [26] Chai F, Ochsenbein A, Traisnel M, Busch R, Breme J, Hildebrand HF. Improving endothelial cell adhesion and proliferation on titanium by sol–gel derived oxide coating. J Biomed Mater Res A 2010;92(2):754–65.
  • [27] Li Y, Neoh KG, Kang ET. Plasma protein adsorption and thrombus formation on surface functionalized polypyrrole with and without electrical stimulation. J Colloid Interface Sci 2004;275(2):488–95.
  • [28] Maitz MF, Pham MT, Wieser E, Tsyganov I. Blood compatibility of titanium oxides with various crystal structure and element doping. J Biomater Appl 2003; 17(4):303–20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0923244-4df5-411f-82f8-a2bf24b739ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.