PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and Macroscopic Properties of Filler Metal (BCuP-5) on Cu-plate using Laser Cladding Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study stacked a thin, dense BCuP-5 (Cu-Ag-P based filler metal) on a Cu-plate using the laser cladding (L.C) process to develop a method to manufacture Ag reducing multilayer clad electrical contact material with an Ag-M(O)/Ag/Cu/BCuP-5 structure. Then, the microstructure and macroscopic properties of the manufactured BCuP-5 coating layer were analyzed. The thickness of the manufactured coating layer was approximately 1.7 mm (maximum). Microstructural observation of the coating layer identified Cu, Ag and Cu-Ag-Cu3P ternary eutectic phases like those in the initial BcuP-5 powder. To evaluate the properties of the manufactured coating layer, hardness and adhesion strength tests were performed. The average hardness of the laser cladded coating layer was 183.2 Hv, which is 2.6 times greater than conventional brazed BcuP-5. The average pull-off strength measured using the stud pull test was 341.6 kg/cm2. Cross-sectional observation of the pulled-off material confirmed that the coating layer and substrate maintained a firm adhesion after pull-off. Thus, the actual adhesion strength of Cu/BcuP-5 was inferred to be greater than 341.6 kg/cm2. Based on the above findings, it was confirmed that it is possible to manufacture a sound Ag reducing multilayer clad electrical contact material using the laser cladding process.
Twórcy
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  • Heesung Metal, 14, Gajaeul-ro, Seo-gu, Incheon, 22828, Rep. of Korea
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
Bibliografia
  • [1] F. Findik, H. Uzun, Mater. Design. 24, 489 (2003).
  • [2] M. Madej, Arch. Metall. Mater. 57, 605 (2012).
  • [3] W. K. Yoon, S. H. Yang: Korea, KR 101394617 (2014).
  • [4] C. Ma, S. Xue, B. Wang, J. Alloy. Compd. 668, 854 (2016).
  • [5] T. Takemoto, I. Okamoto, J. Matsumura, Trans. Jpn. Weld. Res. Inst. 16, 73 (1987).
  • [6] S. K. Chatterjee, Z. Mingxi, A. C. Chilton, Welding. J. 5, 118 (1991).
  • [7] S. Saqib, R. J. Urbanic, K. Aggarwal, Proc. CIRP. 17, 824 (2014).
  • [8] V. Ocelik, I. Furar, J.Th.M. De Hosson, Acta. Mater. 58, 6763 (2010).
  • [9] L. Yi-nan, W. Chang-wen, P. Zi-long, Y. Jiu-chun, L. Zue-song, T. Nonferr. Metal Soc. 21, 394 (2011).
  • [10] B. Carcel, A. Serrano, J. Zambrano, V. Amigo, A. C. Carcel, Physcs. Proc. 56, 284 (2014).
  • [11] N. M. Noordin, K. Y. Cheong, Procedia Engineer. 184, 611 (2017).
Uwagi
EN
1. This work was supported by the Industrial Strategic Technology Development Program (code#: 10070219) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0896ce6-a5e4-43cd-8a0d-ef7f4539070f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.