PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of energy performance of squirrel cage induction motor, line-start synchronous reluctance and permanent magnet motors employing the same stator design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents research on the development of a line-start synchronous reluctance motor (LSSynRM) and line-start permanent magnet synchronous motor (LSPMSM) based on components of a mass-produced three-phase low-power squirrel cage induction motor (IM). The aim of the research was to modify the squirrel cage rotor structure for which the best functional parameters characterizing the steady state of the LSSynRM and LSPMSM were obtained, while meeting the additional requirements for asynchronous start-up. Field-circuit models of the LSSynRM and LSPMSM have been developed in the professional finite element method (FEM) package, MagNet, and applied in the design and optimization calculations of the considered machines. Experimental testing on the designed LSSynRM and LSPMSM prototypes were carried out. The obtained results were compared with the performance of the reference IM. The conclusions resulting from the comparative analysis of these three motors are given and proposals for further work are discussed.
Rocznik
Strony
967--981
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
  • Poznan University of Technology Institute of Electrical Engineering and Electronics Piotrowo 3A str., 60-965 Poznan, Poland
Bibliografia
  • [1] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020), DOI: 10.24425/aee.2020.133023.
  • [2] Jędryczka C., Knypiński Ł., Demenko A., Sykulski J.K., Methodology for cage shape optimization of a permanent magnet synchronous motor under line start conditions, IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1–4 (2018), DOI: 10.1109/TMAG.2017.2764680.
  • [3] Zawilak J., Gwoździewicz M., Start-up of large power electric motors with high load torque, Electrical Review, vol. 95, no. 6, pp. 145–148 (2019), DOI: 10.15199/48.2019.06.27.
  • [4] Wymeersch B., Belie F., Rasmussen C., Vandevelde L., Classification method to define synchronization capability limits of line start permanent magnet motor using mesh-based magnetic equivalent circuit computation results, Energies, vol. 11, no. 4, pp. 1–22 (2018), DOI: 10.3390/en11040998.
  • [5] Baranski M., Szelag W., Lyskawinski W., An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena, Archives of Electrical Engineering, vol. 68, no. 4, pp. 933–946 (2019), DOI: 10.24425/aee.2019.130693.
  • [6] Rabbi S., Rahman M.A., Critical criteria for successful synchronization of line-start IPM motor, IEEE Journal of Emerging and Selected Topics Power Electronics, vol. 2, pp. 348–358 (2014), DOI: 10.1109/JESTPE.2013.2295178.
  • [7] Takahashi A., Kikuchi S., Miyata K., Binder A., Asynchronous torque of line-starting permanentmagnet synchronous motors, IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 498–506 (2015), DOI: 10.1109/TEC.2014.2361836.
  • [8] Baranski M., Szelag W., Jedryczka C., Influence of temperature on partial demagnetization of the permanent magnets during starting process of line start permanent magnet synchronous motor, International Symposium on Electrical Machines (SME), on-line: IEEE Xplore, pp. 1–6 (2017), DOI: 10.1109/ISEM.2017.7993535.
  • [9] Nishiyama N., Uemura H., Honda Y., Highly Demagnetization Performance IPMSM Under Hot Environments, IEEE Transactions on Industry Applications, vol. 55, no. 1, pp. 265–272 (2019), DOI: 10.1109/TIA.2018.2863666.
  • [10] Sjökvist S., Eriksson S., Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions, Energies, vol. 10, no. 10, p. 1638 (2017), DOI: 10.3390/en10101638.
  • [11] Bavendiek G., Müller F., Sabirov J., Hameyer K., Magnetization dependent demagnetization characteristic of rare-earth permanent magnets, Archives of Electrical Engineering, vol. 69, no. 1, pp. 33–45 (2019), DOI: 10.24425/AEE.2019.125978.
  • [12] Ruoho S., Kolehmainen J., Ikaheimo J., Arkkio A., Interdependence of Demagnetization, Loading, and Temperature Rise in a Permanent-Magnet Synchronous Motor, IEEE Transactions on Magnetics, vol. 46, no. 3, pp. 949–953 (2010), DOI: 10.1109/TMAG.2009.2033592.
  • [13] Kim W. H., Kim K. S., Kim S. J., Kang D. W., Go S. C., Chun Y. D., Lee J., Optimal PM design of PMA-SynRM for wide constant-power operation and torque ripple reduction, IEEE Transactions on Magnetics, vol.45, no. 10, pp. 4660–4663 (2009).
  • [14] Abramenko V., Petrov I., Pyrhönen J., Analysis of damper winding designs for direct-on-line synchronous reluctance motor, 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON 2017), on-line: IEEE Xplore, pp. 1802–1809 (2017), DOI: 10.1109/IECON.2017.8216305.
  • [15] Aguba V., Muteba M., Nicolae D.V., Transient analysis of a start-up synchronous reluctance motor with symmetrical distributed rotor cage bars, AFRICON 2017, on-line: IEEE Xplore, pp. 1290–1295(2017), DOI: 10.1109/AFRCON.2017.8095668.
  • [16] Gamba M., Armando E., Pellegrino G., Vagati A., Janjic B., Schaab J., Line-start synchronous reluctance motors: Design guidelines and testing via active inertia emulation, Energy Conversion Congress and Exposition (ECCE2015), on-line: IEEE Xplore, pp. 4820–4827 (2015), DOI: 10.1109/ECCE.2015.7310340.
  • [17] Kolehmainen J., Synchronous reluctance motor with form blocked rotor, IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 450–456 (2010).
  • [18] Tang K., Zhou L., Wang J., Xiao Y., Wang S., Rotor design and optimization of the single-phase line-start synchronous reluctance motor, 20th International Conference on Electrical Machines and Systems (ICEMS), on-line: IEEE Xplore, pp. 1–4 (2017), DOI: 10.1109/ICEMS.2017.8056082.
  • [19] Ershad N. F., Mirsalim M., Aliabad A. D., Line-start permanent magnet motors: Proper design for pole-changing starting method, IET Electric Power Applications, vol. 7, no. 6, pp. 470–476 (2013), DOI: 10.1049/iet-epa.2012.0059.
  • [20] Jedryczka C., Wojciechowski R.M., Demenko A., Finite element analysis of the asynchronous torque in LSPMSM with non-symmetrical squirrel cage winding, International Journal Applied of Electromagnetics and Mechics, vol. 46, no. 2, pp. 367–373 (2014), DOI: 10.3233/JAE-141947.
  • [21] Knypiński Ł., Pawełoszek K., Le Menach Y., Optimization of Low-Power Line-Start PM Motor Using Gray Wolf Metaheuristic Algorithm, Energies, vol. 13, no. 5, pp. 1186-1–1186-11 (2020), DOI: 10.3390/en13051186.
  • [22] Sarani E., Vaez-Zadeh S., Design procedure and optimal guidelines for overall enhancement of steadystate and transient performances of line start permanent magnet motors, IEEE Transactions on Energy Conversion, vol. 32, no. 3, pp. 885–894 (2017), DOI: 0.1109/TEC.2017.2694485.
  • [23] Fei W., Luk P. C. K., Ma J., Shen X. J., Yang G., A High-Performance Line-Start Permanent Magnet Synchronous Motor Amended From a Small Industrial Three-Phase Induction Motor, IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4724–4727 (2009), DOI: 10.1109/TMAG.2009.2022179.
  • [24] Kazumi Kurihara M., Rahman A., High-efficiency line-start interior permanent magnet synchronous motors, IEEE Transactions on Industry Applications, vol. 40, no. 3, pp. 789–796 (2004), DOI: 10.1109/TIA.2004.827476.
  • [25] Melfi M. J., Umans S. D., Atem J. E., Viability of highly efficient multi-horsepower line-start permanentmagnet motors, IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 120–128 (2014), DOI: 10.1109/TIA.2014.2347239.
  • [26] Krings A., Boglietti A., Cavagnino A., Sprague S., Soft Magnetic Material Status and Trends in Electric Machines, IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2405–2414 (2017), DOI: 10.1109/TIE.2016.2613844.
  • [27] Łyskawiński W., Jędryczka C., Szeląg W., Influence of magnet and cage shape on properties of the line start synchronous motor with powder hybrid rotor, International Symposium on Electrical Machines (SME 2017), pp. 1–6 (2017), DOI: 10.1109/ISEM.2017.7993556.
  • [28] Ślusarek B., Kapelski D., Antal L., Zalas P., Gwoździewicz M., Synchronous motor with hybrid permanent magnets on the rotor, Sensors 2014, vol. 14, no. 7, pp. 12425–12436 (2014), DOI: 10.3390/s140712425.
  • [29] Baranski M., FE analysis of coupled electromagnetic-thermal phenomena in the squirrel cage motor working at high ambient temperature, COMPEL – International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 38, no. 4, pp. 1120–1132 (2019),DOI: 10.1108/COMPEL-10-2018-0384.
  • [30] Pałka R., Woronowicz K., Kotwas J., Xing W., Chen H., Influence of different supply modes on the performance of linear induction motors, Archives of Electrical Engineering, vol. 68, no. 3, pp. 473–483 (2019), DOI: 10.24425/aee.2019.129335.
  • [31] Knypiński Ł., Jędryczka C., Demenko A.,Influence of the shape of squirrel-cage bars on the dimensions of permanent magnets in an optimized line-start permanent magnet synchronous motor, Electrical and Electronic Engineering, vol. 36, no. 1, pp. 298–308 (2017), DOI: 10.1108/COMPEL-03-2016-0103.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b07fa32c-85c2-4603-8144-453bb34cb66a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.