Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to assess the accuracy of predicting the aerodynamic loads and investigate the aerodynamic wake characteristics of a vertical axis wind turbine (VAWT) rotor using a simplified two-dimensional numerical rotor model and an advanced numerical approach - the Scale Adaptive Simulation (SAS) coupled with the four-equation γ-Re_θ turbulence model. The challenge for this approach lies in the operating conditions of the rotor, the blade pitch angles, and the very small geometric dimensions of the rotor. The rotor, with a diameter of 0.3m, operates at a low tip speed ratio of 2.5 and an extremely low blade Reynolds number of approximately 22,000, whereas the pitch angles, β, are: -10, 0, and 10 degrees. Validation was conducted based on high-fidelity measurements obtained using the PIV technique at TU Delft. The obtained results of rotor loads and velocity profiles are surprisingly reliable for cases of β=0° and β=-10°. However, the 2-D model is too imprecise to estimate both aerodynamic loads and velocity fields accurately.
Wydawca
Rocznik
Tom
Strony
97--109
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
autor
- Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
autor
- Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
autor
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
Bibliografia
- 1. Kumar R., Raahemifar K., Fung A.S. A critical review of vertical axis wind turbines for urban applications. Renewable and Sustainable Energy Reviews. 2018, 89, 281–91. DOI: 10.1016/j.rser.2018.03.033.
- 2. Bianchini A., Ferrara G., Ferrari L. Pitch optimization in small-size darrieus wind turbines. Energy Procedia. 2015, 81, 122–32. DOI: 10.1016/j.egypro.2015.12.067.
- 3. Du L., Ingram G., Dominy R.G. A review of H Darrieus wind turbine aerodynamic research. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019, 233(23–24), 7590–616. DOI: 10.1177/0954406219885962.
- 4. Amet E., Maître T., Pellone C., Achard J.L. 2D Numerical simulations of blade-vortex interaction in a darrieus turbine. Journal of Fluids Engineering. 2009, 131(111103). DOI: 10.1115/1.4000258.
- 5. Rezaeiha A., Montazeri H., Blocken B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Conversion and Management. 2018, 169, 45–77. DOI: 10.1016/j.enconman.2018.05.042.
- 6. Fiedler A.J., Tullis S. Blade offset and pitch effects on a high solidity vertical axis wind turbine. Wind Engineering. 2009, 33(3), 237–46. DOI: 10.1260/030952409789140955.
- 7. Elkhoury M., Kiwata T., Aoun E. Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics. 2015, 139, 111–23. DOI: 10.1016/j.jweia.2015.01.004.
- 8. Rezaeiha A., Kalkman I., Blocken B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy. 2017, 197, 132–50. DOI: 10.1016/j.apenergy.2017.03.128.
- 9. Huang M., Sciacchitano A., Ferreira C. On the wake deflection of vertical axis wind turbines by pitched blades. Wind Energy. 2023, 26(4), 365–87. DOI:10.1002/we.2803.
- 10. Szczerba Z., Szczerba P., Szczerba K., Szumski M., Pytel K. Wind tunnel experimental study on the efficiency of vertical-axis wind turbines via analysis of blade pitch angle influence. Energies. 2023, 16(13), 4903. DOI: 10.3390/en16134903.
- 11. Elsakka M.M., Ingham D.B., Ma L., Pourkashanian M., Moustafa G.H., Elhenawy Y. Response surface optimisation of vertical axis wind turbine at low wind speeds. Energy Reports. 2022, 8, 10868–80. DOI: 10.1016/j.egyr.2022.08.222.
- 12. Menter F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B.,
- Huang, P.G., Völker, S.A. Correlation-based transition model using local variables: Part I—model formulation. J. Turbomach. 2006, 128, 413–422. DOI: 10.1115/1.2184352.
- 13. Michna J., Rogowski K. Numerical study of the effect of the reynolds number and the turbulence intensity on the performance of the NACA 0018 airfoil at the low reynolds number regime. Processes. 2022, 10, 1004. DOI: 10.3390/pr10051004.
- 14. Huang M., Ferreira C., Sciacchitano A., Scarano F. Experimental comparison of the wake of a vertical axis wind turbine and planar actuator surfaces. J. Phys. Conf. Ser. 2020, 1618, 052063. DOI: 10.1088/1742-6596/1618/5/052063.
- 15. Rezaeiha A., Kalkman I., Blocken B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renew. Energy 2017. 107, 373–385. DOI: 10.1016/j.renene.2017.02.006.
- 16. Bangga G., Hutomo G., Wiranegara R., Sasongko H. Numerical study on a single bladed vertical axis wind turbine under dynamic stall. J. Mech. Sci. Technol. 2017. 31(1), 261–267. DOI: 10.1007/s12206-016-1228-9.
- 17. Ansys® Fluent Release 2022, ANSYS, Inc.
- 18. Mendoza V., Bachant P., Ferreira C., Goude A. Near-wake flow simulation of a vertical axis turbine using an actuator line model. Wind Energy 2019. 22, 171–188. DOI: 10.1002/we.2277.
- 19. Rezaeiha A., Montazeri H., Blocken B. CFD analysis of dynamic stall on vertical axis wind turbines using Scale-Adaptive Simulation (SAS): Comparison against URANS and hybrid RANS/LES. Energy Convers. Manag. 2019. 196, 1282–1298. DOI: 10.1016/j.enconman.2019.06.081.
- 20. Rogowski K., Hansen M., Maroński., Lichota P. Scale adaptive simulation model for the darrieus wind turbine. J. Phys. Conf. Ser. 2016, 753, 022050. DOI: 10.1088/1742-6596/753/2/022050.
- 21. Rogowski K. CFD computation of the H-Darrieus wind turbine—The impact of the rotating shaft on the rotor performance. Energies 2019. 12(13), 2506. DOI: 10.3390/en12132506.
- 22. Rezaeiha A., Montazeri H., Blocken B. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Convers. Manag. 2018. 156, 301–316. DOI: 10.1016/j.enconman.2017.11.026.
- 23. Rogowski K., Maroński R., Piechna J. Numerical analysis of a small-size vertical-axis wind turbine performance and averaged flow parameters around the rotor. Arch. Mech. Eng. 2017, 64(2), 205–218. DOI: 10.1515/meceng-2017-0013.
- 24. Mendoza V., Bachant P., Wosnik M., Goude A. Validation of an Actuator line model coupled to a dynamic stall model for pitching motions characteristic to vertical axis turbines. J. Phys. Conf. Ser. 2016, 753, 022043. DOI: 0.1088/1742-6596/753/2/022043.
- 25. Huang M. Wake and wind farm aerodynamics of vertical axis wind turbines. Doctoral dissertation, Technische Universiteit Delft, 2023. DOI: 10.4233/uuid:14619578-e44f-45bb-a213-a9d179a54264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b079f942-6646-4b94-a5f7-0538878c13e1