Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper describes a novel, simple servo drive position controller, using solely the knowledge about the structure of the nonlinear model and the constraints met by individual components of the model. The desired behavior of the position and velocity signals is obtained by imposing a time-varying constraint on the signal aggregating information about the position and velocity tracking errors. The method allows you to determine the maximum control (servo drive current) necessary to achieve the control goal under the existing initial conditions and the selected reference trajectory. The control is constrained and consists in appropriate reaction when the trajectory approaches the barrier, the shape of which is responsible for the imposed properties of the transient and quasi-steady state tracking error. In addition to the derivation of the control, a discussion of its possible variants and basic properties is presented. Control with time-varying constraints has been introduced, which allows the control objectives to be met with limited conservatism of the imposed constraints. The influence of technical factors related to actual speed and position measurements was discussed and the operation of the real drive on a laboratory stand was presented.
Rocznik
Tom
Strony
art. no. e150335
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Lodz University of Technology, Institute of Automatic Control, Poland
autor
- Lodz University of Technology, Institute of Automatic Control, Poland
autor
- Lodz University of Technology, Institute of Automatic Control, Poland
Bibliografia
- [1] J. Zhang, Q.-G. Wang, and J. Sun, “On finite-time stability of nonautonomous nonlinear systems,” Int. J. Control, vol. 93, no. 4, pp. 783–787, 2020, doi: 10.1080/00207179.2018.1536831.
- [2] X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, no. 5, pp. 881–888, 2005, doi: 10.1016/j.automatica.2004.11.036.
- [3] S. Li, C.K. Ahn, and Z. Xiang, “Command-Filter-Based Adaptive Fuzzy Finite-Time Control for Switched Nonlinear Systems Using State-Dependent Switching Method,” IEEE Trans. Fuzzy Syst., vol. 29, no. 4, pp. 833–845, 2021, doi: 10.1109/TFUZZ.2020.2965917.
- [4] H. Hou, X. Yu, L. Xu, K. Rsetam, and Z. Cao, “Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5647–5656, 2020, doi: 10.1109/TIE.2019.2931517.
- [5] B. Wang, M. Iwasaki, and J. Yu, “Finite-Time Command-Filtered Backstepping Control for Dual-Motor Servo Systems With Lu-Gre Friction,” IEEE Trans. Ind. Inform., vol. 19, no. 5, pp. 6376–6386, 2023, doi: 10.1109/TII.2022.3182341.
- [6] K. Li and Y. Li, “Adaptive Neural Network Finite-Time Dynamic Surface Control for Nonlinear Systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5688–5697, 2021, doi: 10.1109/TNNLS.2020.3027335.
- [7] J. Yang, J. Na, and G. Gao, “Robust model reference adaptive control for transient performance enhancement,” Int. J. Robust Nonlinear Control., vol. 30, no. 15, pp. 6207–6228, 2020, doi: 10.1002/rnc.5080.
- [8] J. Na, G. Herrmann, and K. Zhang, “Improving transient performance of adaptive control via a modified reference model and novel adaptation,” Int. J. Robust Nonlinear Control., vol. 27, no. 8, pp. 1351–1372, 2017, doi: 10.1002/rnc.3636.
- [9] S. Wang, “Nonlinear Uncertainty Estimator-Based Robust Control for PMSM Servo Mechanisms With Prescribed Performance,” IEEE Trans. Transp. Electrif., vol. 9, no. 2, pp. 2535–2543, 2023, doi: 10.1109/TTE.2022.3212671.
- [10] J.-X. Zhang and G.-H. Yang, “Robust Adaptive Fault-Tolerant Control for a Class of Unknown Nonlinear Systems,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 585–594, 2017, doi: 10.1109/TIE.2016.2595481.
- [11] C.P. Bechlioulis and G.A. Rovithakis, “A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems,” Automatica, vol. 50, no. 4, pp. 1217–1226, 2014, doi: 10.1016/j.automatica.2014.02.020.
- [12] W. Esterhuizen and Q.-G. Wang, “Finite-time stability and stabilisation with polyhedral domains for linear systems,” Int. J. Control, vol. 93, no. 9, pp. 2086–2094, 2020, doi: 10.1080/00207179.2018.1541364.
- [13] W. Esterhuizen and Q.-G. Wang, “Control design with guaranteed transient performance: An approach with polyhedral target tubes,” Automatica, vol. 119, p. 109097, 2020, doi: 10.1016/j.automatica.2020.109097.
- [14] Y. Cheng, X. Ren, D. Zheng, and L. Li, “Non-Linear Bandwidth Extended-State-Observer Based Non-Smooth Funnel Control for Motor-Drive Servo Systems,” IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 6215–6224, 2022, doi: 10.1109/TIE.2021.3095811.
- [15] A. Ilchmann, E.P. Ryan, and S. Trenn, “Tracking control: Performance funnels and prescribed transient behaviour,” Syst. Control Lett., vol. 54, no. 7, pp. 655–670, 2005, doi: 10.1016/j.sysconle.2004.11.005.
- [16] A. Ilchmann, E.P. Ryan, and P. Townsend, “Tracking with Prescribed Transient Behavior for Nonlinear Systems of Known Relative Degree,” SIAM J. Control Optim., vol. 46, no. 1, pp. 210–230, 2007, doi: 10.1137/050641946.
- [17] S. Brock, “Hybrid P–PI sliding mode position and speed controller for variable inertia drive,” Prz. Elektrotechniczny, vol. 5, pp. 29–34, 2014.
- [18] S. Brock, “Sterowanie ślizgowe zapewniające zbieżność uchybu w skończonym czasie dla napędu bezpośredniego,” Prz. Elektrotechniczny, vol. 5, pp. 124–129, 2016.
- [19] M. Żychlewicz, R. Stanisławski, J. Szrek, M. Malarczyk, and M. Kamiński, “Rozmyty regulator stanu układu dwumasowego,” Prz. Elektrotechniczny, vol. 3, pp. 53–58, 2023.
- [20] J. Kabziński, P. Mosiołek, and M. Jastrzębski, “Adaptive position tracking with hard constraints—barrier lyapunov functions approach,” in Studies in Systems, Decision and Control, vol. 75, Springer Berlin Heidelberg, 2017, pp. 27–52. doi: 10.1007/978-3-319-45735-2_2.
- [21] J. Kabziński and P. Mosiołek, “Adaptive, nonlinear state transformation-based control of motion in presence of hard constraints,” Bull. Pol. Acad. Sci. Tech. Sci. vol. 68, no. 5, pp. 963–971, 2020, doi: 10.24425/bpasts.2020.134653.
- [22] J. Kabziński and P. Mosiołek, “Observer-Based, Robust Position Tracking in Two-Mass Drive System,” Energies (Basel), vol. 15, no. 23, p. 9093, 2022, doi: 10.3390/en15239093.
- [23] M. Jastrzębski, J. Kabziński, and P. Mosiołek, “Finite-Time, Robust, and Adaptive Motion Control with State Constraints: Controller Derivation and Real Plant Experiments,” Energies (Basel), vol. 15, no. 3, p. 934, 2022, doi: 10.3390/en15030934.
- [24] Y. Cheng, X. Ren, D. Zheng, and L. Li, “Non-Linear Bandwidth Extended-State-Observer Based Non-Smooth Funnel Control for Motor-Drive Servo Systems,” IEEE Trans. Ind. Electron., vol. 69, no. 6, pp. 6215–6224, 2022, doi: 10.1109/TIE.2021.3095811.
- [25] Y. Su, C. Zheng, and P. Mercorelli, “Simple Saturated PID Control for Fast Transient of Motion Systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 8985–8990, 2020, doi: 10.1016/j.ifacol.2020.12.2013.
- [26] H. Hou, X. Yu, L. Xu, K. Rsetam, and Z. Cao, “Finite-Time Continuous Terminal Sliding Mode Control of Servo Motor Systems,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5647–5656, 2020, doi: 10.1109/TIE.2019.2931517.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b077093a-40fd-4c73-9983-6f8c737cb9d5