Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is a new approach to the Duhamel integral. It contains an overview of formulas and applications of Duhamel’s integral as well as a number of new results on the Duhamel integral and principle. Basic definitions are recalled and formulas for Duhamel’s integral are derived via Laplace transformation and Leibniz integral rule. Applications of Duhamel’s integral for solving certain types of differential and integral equations are presented. Moreover, an interpretation of Duhamel’s formula in the theory of operator semigroups is given. Some applications of Duhamel’s formula in control systems analysis are discussed. The work is also devoted to the usage of Duhamel’s integral for differential equations with fractional order derivative.
Czasopismo
Rocznik
Tom
Strony
815--847
Opis fizyczny
Bibliogr. 51 poz., rys., wzory
Twórcy
autor
- Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
autor
- Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
autor
- Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
autor
- Department of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
- [1] S. Abbas, M. Benchohra and G.M. N’Guerekata: Topics in Fractional Differential Equations. Springer, New York, 2012.
- [2] R. Almeida, R. Kamocki, A.B. Malinowska and T. Odzijewicz: On the existence of optimal consensus control for the fractional Cucker-Smale model. Archives of Control Sciences, 30(4), (2020), 625-651, DOI: 10.24425/acs.2020.135844.
- [3] J.J. Benedetto and W. Czaja: Integration and Modern Analysis. Brikhäuser, Boston, 2009.
- [4] N. Bourbaki: Fonctions d’une Variable Réele. Hermann, Paris, 1976.
- [5] M. Buslowicz: Robust stability of a class of uncertain fractional order linear systems with pure delay. Archives of Control Sciences, 25(2), (2015), 177-187.
- [6] A.I. Daniliu: Impulse Series Method in the Dynamic Analysis of Structures. In: Proceedings of the Eleventh World Conference on Earthquake Engineering, paper no 577, (1996).
- [7] S. Das: Functional Fractional Calculus. Second edition, Springer, Berlin, 2011.
- [8] L. Debnath and D. Bhatta: Integral Transforms and their Applications. Third edition, CRC Press - Taylor & Francis Group, Boca Raton, 2015.
- [9] V.A. Ditkin and A.P. Prudnikov: Integral Transforms and Operational Calculus. Pergamon Press, Oxford, 1965.
- [10] G. Doetsch: Handbuch der Laplace-Transformation. Band I, Brikhäuser, Basel, 1950.
- [11] D.T. Duc and N.D.V. Nhan: Norm inequalities for new convolutions and their applications. Applicable Analysis and Discrete Mathematics, 9(1), (2015), 168-179, DOI: 10.2298/AADM150109001D.
- [12] K.J. Engel and R. Nagel: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York, 2000.
- [13] K.J. Engel and R. Nagel: A Short Course on Operator Semigroups. Springer, New York, 2006.
- [14] T.M. Flett: Differential analysis. Cambridge University Press, Cambridge, 2008.
- [15] J.F. Gomez-Aguilar, H. Yepez-Martinez, C. Calderon-Ramon, I. Cruz-Orduna, R.F. Escobar-Jimenez and V.H. Olivares-Peregrino: Modeling of mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy, 17(9), (2015), 5340-5343, DOI: 10.3390/e17096289.
- [16] M.I. Gomoyunov: Optimal control problems with a fixed terminal time in linear fractional-order systems. Archives of Control Sciences, 30(4), (2020), 721-744, DOI: 10.24425/acs.2020.135849.
- [17] R. Gorenflo and F. Mainardi: Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien, 1997.
- [18] R. Grzymkowski and R. Witula: Complex functions and Laplace transform in examples and problems. Pracownia Komputerowa Jacka Skalmierskiego, Gliwice, 2010, (in Polish).
- [19] V.A. Ilin, V.A. Sadovniczij and B.H. Sendov: Mathematical Analysis, Initial Course. Moscow University Press, Moscow, 1985, (in Russian).
- [20] V.A. Ilin, V.A. Sadovniczij and B.H. Sendov: Mathematical Analysis, Continuation Course. Moscow University Press, Moscow, 1987, (in Russian).
- [21] T. Kaczorek: Realization problem for fractional continuous-time systems. Archives of Control Sciences, 18(1), (2008), 43-58.
- [22] T. Kaczorek: A new method for computation of positive realizations of fractional linear continuous-time systems. Archives of Control Sciences, 28(4), (2018), 511-525, DOI: 10.24425/acs.2018.125481.
- [23] K.S. Kazakov: Dynamic response of a single degree of freedom (SDOF) system in some special load cases, based on the Duhamel integral. In: Proceedings of the EngOpt 2008: International Conference on Engineering Optimization, Rio de Janeiro, Brazil, 2008.
- [24] N.S. Khabeev: Duhamel integral form for the interface heat flux between bubble and liquid. International Journal of Heat and Mass Transfer, 50(25), (2007), 5340-5343, DOI: 10.1016/j.ijheatmasstransfer.2007.06.012.
- [25] J. Klamka and B. Sikora: New controllability criteria for fractional systems with varying delays. Theory and applications of non-integer order systems in Lecture Notes in Electrical Engineering, 407, (2017), 333-344.
- [26] M. Klimek: On Solutions of Linear Fractional Differential Equations of a Variational Type. Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2009.
- [27] M.I. Kontorowicz: The Operator Calculus and Processes in Electrical Systems. Wydawnictwo Naukowo-Techniczne, Warsaw, 1968, (in Polish).
- [28] M.I. Krasnov, A.I. Kiselev and G.I. Makarenko: Functions of a Complex Variable, Operational Calculus, and Stability Theory, Problems and Exercises. Mir Publishers, Moscow, 1984.
- [29] L.D. Kudryavtsev: Course of Mathematical Analysis. Volume 2, Higher School Press, Moscow, 1988, (in Russian).
- [30] M.A. Lavrentev and B.V. Shabat: Methods of the Theory of Functions of a Complex Variable. Nauka, Moscow, 1973, (in Russian).
- [31] Sz. Lubecki: Duhamel’s theorem for time-dependent thermal boundary conditions. In: R.B Hetnarski (Ed.), Encyclopedia of Thermal Stresses, Springer Netherlands, New Delhi, 2014.
- [32] E. Łobos and B. Sikora: Advanced Calculus - Selected Topics. Silesian University of Technology Press, Gliwice, 2009.
- [33] Z. Łuszczki: Application of general Bernstein polynomials to proving some theorem on partial derivatives. Prace Matematyczne, 2(2), (1958), 355-360, (in Polish).
- [34] J. Mikusinski: On continuous partial derivatives of function of several variables. Prace Matematyczne, 7(1), (1962), 55-58, (in Polish).
- [35] S. Mischler: An introduction to evolution PDEs, Chapter 3 - Evolution Equation and semigroups, Dauphine Université Paris, published online: www.ceremade.dauphine.fr/~mischler/Enseignements/M2evol1516/chap3.pdf.
- [36] N.Nguyen Du Vi, D. Dinh Thanh and T. Vu Kim: Weighted norm inequalities for derivatives and their applications. Kodai Mathematical Journal, 36(2), (2013), 228-245.
- [37] J. Osiowski: An Outline of the Operator Calculus. Wydawnictwo Naukowo-Techniczne, Warsaw, 1981, (in Polish).
- [38] G. Petiau: Theory of Bessel’s Functions. Centre National de la Recherche Scientifique, Paris, 1955, (in French).
- [39] K. Rogowski: Reachability of standard and fractional continuous-time systems with constant inputs. Archives of Control Sciences, 26(2), (2016), 147-159, DOI: 10.1515/acsc-2016-0008.
- [40] F.A. Shelkovnikov and K.G. Takaishvili: Collection of Problems on Operational Calculus. Higher School Press, Moscow, 1976, (in Russian).
- [41] B. Sikora: Controllability of time-delay fractional systems with and without constraints. IET Control Theory & Applications, 10(3), (2019), 320-327.
- [42] B. Sikora: Controllability criteria for time-delay fractional systems with retarded state. International Journal of Applied Mathematics and Computer Science, 26(6), (2019), 521-531.
- [43] B. Sikora and J. Klamka: Constrained controllability of fractional linear systems with delays in control. Systems & Control Letters, 106, (2017), 9-15.
- [44] B. Sikora and J. Klamka: Constrained controllability of fractional linear systems with delays in control. Kybernetika, 53(2), (2017), 370-381.
- [45] B. Sikora: On application of Rothe’s fixed point theorem to study the controllability of fractional semilinear systems with delays. Kybernetika, 55(4), (2019), 675-698.
- [46] B. Sikora and N. Matlok: On controllability of fractional positive continuous-time linear systems with delay. Archives of Control Sciences, 31(1), (2021), 29-51, DOI: 10.24425/acs.2021.136879.
- [47] J. Tokarzewski: Zeros and the output-zeroing problem in linear fractional-order systems. Archives of Control Sciences, 18(4), (2008), 437-451.
- [48] S. Umarov: On fractional Duhamel’s principle and its applications. Journal of Differential Equations, 252(10), (2012), 5217-5234.
- [49] S. Umarov and E. Saydamatov: A fractional analog of the Duhamel principle. Fractional Calculus & Applied Analysis, 9(1), (2006), 57-70.
- [50] S. Umarov and E. Saydamatov: A generalization of Duhamel’s principle for differential equations of fractional order. Doklady Mathematics, 75(1), (2007), 94-96.
- [51] C. Villani: Birth of a Theorem, Grasset & Fasquelle, 2012, (in French).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b07432ca-7c06-4303-8967-e42c578b93de