PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the conditions of PGSu synthesiswith simplex method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly(glycerol succinate) – PGSu – is one of glycerol polyesters which has focused nowadays the interestof scientists developing new biomaterials. Probably the polyester could be used as a drug carrier or asa cell scaffold in tissue engineering. Due to its potential use in medicine, it is extremely important todevelop a synthesis and then optimize it to obtain a material with desired properties. In this work oneflask two-step polycondensation of glycerol and succinic anhydride to PGSu is presented. Synthesiswas optimized with the simplex method and also described using a second-degree equation with twovariables (temperature and time) to better find the optimum conditions. PGSu was characterized byFTIR spectroscopy, NMR spectroscopy, degree of esterification was determined, and also molecularweight was calculated for each experiment using Carothers equation. A new synthesis route wasdeveloped and optimized. Temperature and time influence on molecular weight and esterificationdegree of obtained polyester are presented. Based on experiments conducted in this work, it waspossible to obtain poly(glycerol succinate) with molecular weight of 6.7 kDa.
Rocznik
Strony
119–--128
Opis fizyczny
Bibliogr. 48 poz., tab., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
  • 1. Agach M., Delbaere S., Marinkovic S., Estrine B., Nardello-Rataj V., 2012. Characterization, stability and ecotoxicproperties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol.Polym.Degrad. Stab., 97, 1956–1963. DOI: 10.1016/j.polymdegradstab.2012.03.026.
  • 2. Ayati Najafabadi S.A., Shirazaki P., Zargar Kharazi A., Varshosaz J., Tahriri M., Tayebi L., 2018. Evaluation ofsustained ciprofloxacin release of biodegradable electrospun gelatin/poly(glycerol sebacate) mat membranes forwound dressing applications.Asia-Pac. J. Chem. Eng., 13, e2255. DOI: 10.1002/apj.2255.
  • 3. Barrett D.G., Yousaf M.N., 2009. Design and applications of biodegradable polyester tissue scaffolds based on en-dogenous monomers found in human metabolism.Molecules, 14, 4022–4050. DOI: 10.3390/molecules14104022.
  • 4. Cai M., Liu H., Jiang Y., Wang J., Zhang S., 2019. A high-strength biodegradable thermoset polymer forinternal fixation bone screws: Preparation, in vitro and in vivo evaluation.Colloids Surf., B, 183, 110445.DOI: 10.1016/j.colsurfb.2019.110445.
  • 5. Carnahan M.A., Grinstaff M.W., 2001. Synthesis and characterization of poly(glycerol-succinic acid) dendrimers.Macromolecules, 34, 7648–7655. DOI: 10.1021/ma010848n.
  • 6. Chen Q.Z., Bismarck A., Hansen U., Junaid S., Tran M.Q., Harding S.E., Ali N.N., Boccaccini A.R., 2008.Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties ofmyocardial tissue.Biomaterials, 29, 47–57. DOI: 10.1016/j.biomaterials.2007.09.010.
  • 7. Chen Q., Liang S., Thouas G.A., 2011. Synthesis and characterisation of poly(glycerol sebacate)-co-lactic acid assurgical sealants.Soft Matter, 7, 6484–6492. DOI: 10.1039/c1sm05350g.
  • 8. Cheng K.C., Chuang T.H., Tsai T.H., Guo W., Su W.F., 2008. Model of hyperbranched polymers formed bymonomers A2 and Bg with end-capping molecules.Eur. Polym. J., 44, 2998–3004. DOI: 10.1016/j.eurpolymj.2008.06.019.
  • 9. Ciriminna R., Pina C. D., Rossi M., Pagliaro M., 2014. Understanding the glycerol market.Eur. J. Lipid Sci.Technol., 116, 1432–39. DOI: 10.1002/ejlt.201400229.
  • 10. Denis P., Wrzecionek M., Gadomska-Gajadhur A., Sajkiewicz P., 2019. Poly(Glycerol sebacate)–poly(l-lactide) non-wovens. Towards attractive electrospun material for tissue engineering.Polymers,11, 2113. DOI: 10.3390/POLYM11122113.
  • 11. Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Murphy R.C., Raetz C.R.H., Russell D.W.,Seyama Y., Shaw W., Shimizu T., Spener F., van Meer G., VanNieuwenhze M.S., White S.H., Witztum J.L.,Dennis E.A., 2005. A comprehensive classification system for lipids.Eur. J. Lipid Sci. Technol., 107, 337–64.DOI: 10.1002/ejlt.200405001.
  • 12. Frydrych M., Román S., Macneil S., Chen B., 2015. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blendscaffolds for adipose tissue engineering.Acta Biomater., 18, 40–49. DOI: 10.1016/j.actbio.2015.03.004.
  • 13. Gadomska-Gajadhur A., Wrzecionek M., Matyszczak G., Piętowski P., Więcław M., Ruśkowski P., 2018. Optimiza-tion of poly(glycerol sebacate) synthesis for biomedical purposes with the design of experiments.Org. ProcessRes. Dev.,22, 1793–1800. DOI: 10.1021/acs.oprd.8b00306.
  • 14. Gao J., Ensley A.E., Nerem R.M., Wang Y., 2007. Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells.J. Biomed. Mater. Res. Part A,83, 1070–1075.DOI: 10.1002/jbm.a.31434.
  • 15. Hagandora C.K., Gao J., Wang Y., Almarza A.J., 2013. Poly (glycerol sebacate): a novel scaffold material fortemporomandibular joint disc engineering.Tissue Eng. Part A, 19, 729–737. DOI: 10.1089/ten.tea.2012.0304.
  • 16. Hall, G. van, M. Sacchetti, G. Rĺdegran, and B. Saltin. 2002. Human Skeletal muscle fatty acid and glycerolmetabolism during rest, exercise and recovery.J. Physiol., 543, 1047–1058. DOI: 10.1113/jphysiol.2002.023796.
  • 17. Jańczewski D., Różycki C., Synoradzki L., 2010.Projektowanie procesów technologicznych, Matematyczne metodyplanowania eksperymentów. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • 18. Jeffries E.M., Allen R.A., Gao J., Pesce M., Wang Y., 2015. Highly elastic and suturable electrospun poly(glycerolsebacate) fibrous scaffolds.Acta Biomater., 18, 30–39. DOI: 10.1016/j.actbio.2015.02.005.
  • 19. Kafouris D., Kossivas F., Constantinides C., Nguyen N.Q., Wesdemiotis C., Patrickios C.S., 2013. Biosourced am-phiphilic degradable elastomers of poly(glycerol sebacate): synthesis and network and oligomer characterization.Macromolecules, 46, 622–30. DOI: 10.1021/ma3016882.
  • 20. Lang N., Pereira M.J., Lee Y., Friehs I., Vasilyev N. V., Feins E.N., Ablasser K., O’Cearbhaill E.D., Xu C., FabozzoA., Padera R., Wasserman S., Freudenthal F., Ferreira L.S., Langer R., Karp J.M., Del Nido P.J., 2014. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects.Sci. Transl. Med., 6, 218ra6.DOI: 10.1126/scitranslmed.3006557.
  • 21. Li C.J., Trost B.M., 2008. Green chemistry for chemical synthesis.Proc. Natl. Acad. Sci. U.S.A., 105, 13197–13202.DOI: 10.1073/pnas.0804348105.
  • 22. Li X., Hong A.T.L., Naskar N., Chung H.J., 2015. Criteria for Quick and consistent synthesis of poly(glycerol seba-cate) for tailored mechanical properties.Biomacromolecules, 16, 1525–1533. DOI: 10.1021/acs.biomac.5b00018.
  • 23. Li Y., Cook W.D., Moorhoff C., Huang W.-C., Chen Q.-Z., 2013. Synthesis, characterization and properties ofbiocompatible poly(glycerol sebacate) pre-polymer and gel.Polym. Int., 62, 534–547. DOI: 10.1002/pi.4419.
  • 24. Liu L.L., Yi F.C., Cai W., 2012. Synthesis and Shape memory effect of poly (glycerol-sebacate) elastomer.Adv.Mater. Res., 476–478, 2141–2144. DOI: 10.4028/www.scientific.net/AMR.476-478.2141.
  • 25. Liu Q., Tian M., Ding T., Shi R., Feng Y., Zhang L., Chen D., Tian W., 2007. Preparation and characterizationof a thermoplastic poly(glycerol sebacate) elastomer by two-step method. J. Appl. Polym. Sci., 103, 1412–1419.DOI: 10.1002/app.24394.
  • 26. Liu Y., Tian K., Hao J., Yang T., Geng X., Zhang W., 2019. Biomimetic poly(glycerol sebacate)/polycaprolactoneblend scaffolds for cartilage tissue engineering.J. Mater. Sci. – Mater. Med., 30, 53. DOI: 10.1007/s10856-019-6257-3.
  • 27. Loh X.J., Abdul Karim A., Owh C., 2015. Poly(glycerol sebacate) biomaterial: synthesis and biomedical applica-tions.J. Mater. Chem. B, 3, 7641–52. DOI: 10.1039/C5TB01048
  • 28. A.Maliger R., Halley P.J., Cooper-White J.J., 2013. Poly(glycerol-sebacate) bioelastomers-kinetics of step-growthreactions using Fourier transform (ft)-Raman spectroscopy.J. Appl. Polym. Sci., 127, 3980–3986. DOI: 10.1002/app.37719.
  • 29. Medeiros E.S., Offeman R.D., Klamczynski A.P., Glenn G.M., Mattoso L.H.C., Orts W.J., 2014. Synthesis, char-acterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with nanocrystalline cellulose.J. Polym. Environ., 22, 219–26. DOI: 10.1007/s10924-014-0643-1.
  • 30. Motlagh D., Yang J., Lui K.Y., Webb A.R., Ameer G.A., 2006. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering.Biomaterials, 27, 4315–4324. DOI: 10.1016/j.biomaterials.2006.04.010.
  • 31. Pagliaro M., Pagliaro M., 2017. Glycerol: A key platform chemical of the forthcoming bioeconomy.Glycerol,109-132. DOI: 10.1016/B978-0-12-812205-1.00005-9.
  • 32. Patel A., Gaharwar A.K., Iviglia G., Zhang H., Mukundan S., Mihaila S.M., Demarchi D., Khademhosseini A., 2013.Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers.Biomaterials,34, 3970–3983. DOI: 10.1016/j.biomaterials.2013.01.045.
  • 33. Rai R., Tallawi M., Grigore A., Boccaccini A.R., 2012. Synthesis, properties and biomedical applications ofpoly(glycerol sebacate) (PGS): A review.Prog. Polym. Sci.,37, 1051–1078. DOI: 10.1016/j.progpolymsci.2012.02.001.
  • 34. Rai R., Tallawi M., Roether J.A., Detsch R., Barbani N., Rosellini E., Kaschta J., Schubert D.W., Boccaccini A.R.,2013. Sterilization effects on the physical properties and cytotoxicity of poly(glycerol sebacate).Mater. Lett., 105,32–35. DOI: 10.1016/j.matlet.2013.04.024.
  • 35. Sheng H.P., Huggins R.A., 1979. A review of body composition studies with emphasis on total body water and fat.Am. J. Clin. Nutr., 32, 630–647. DOI: 10.1093/ajcn/32.3.630.
  • 36. Sun Z.J., Chen C., Sun M.Z., Ai C.H., Lu X.L., Zheng Y.F., Yang B.F., Dong D.L., 2009. The application of poly(glycerol-sebacate) as biodegradable drug carrier.Biomaterials, 30, 5209–5214. DOI: 10.1016/j.biomaterials.2009.06.007.
  • 37. Valerio O., Misra M., Mohanty A.K., 2018. Poly(glycerol- co -diacids) polyesters: from glycerol biorefinery tosustainable engineering applications, a review.ACS Sustainable Chem. Eng., 6, 5681–5693. DOI: 10.1021/ac-ssuschemeng.7b04837.
  • 38. Valerio O., Pin J.M., Misra M., Mohanty A.K., 2016. Synthesis of glycerol-based biopolyesters as toughnessenhancers for polylactic acid bioplastic through reactive extrusion.ACS Omega, 1, 1284–1295. DOI: 10.1021/ac-somega.6b00325.
  • 39. van Hall, G., Sacchetti, M., Rĺdegran, G., Saltin, B., 2002. Human skeletal muscle fatty acid and glycerol metabolismduring rest, exercise and recovery.J. Physiol., 543, 1047–1058. DOI: 10.1113/jphysiol.2002.023796.
  • 40. Wang Y., Ameer G.A., Sheppard B.J., Langer R., 2002a. A tough biodegradable elastomer.Nat. Biotechnol., 20,602–606. DOI: 10.1038/nbt0602-602.
  • 41. Wang Y., Kim Y.M., Langer R., 2003. In vivo degradation characteristics of poly(glycerol sebacate).J. Biomed.Mater. Res., 66A, 192–197. DOI: 10.1002/jbm.a.10534.
  • 42. Wang Y., Sheppard B.J., Langer R., 2002b. Poly(glycerol sebacate)—a novel biodegradable elastomer for tissueengineering.MRS Proceedings, 724 (Symposium N – Biological and Biomimetic Materials Properties to Function),N11.1. DOI: 10.1557/PROC-724-N11.1.
  • 43. Yan Y., Potts M., Jiang Z., Sencadas V., 2018. Synthesis of highly-stretchable graphene – poly(glycerol seba-cate) elastomeric nanocomposites piezoresistive sensors for human motion detection applications.Compos. Sci.Technol., 162, 14–22. DOI: 10.1016/j.compscitech.2018.04.010.
  • 44. Yan Y., Sencadas V., Zhang J., Zu G., Wei D., Jiang Z., 2017. Processing, characterisation and electromechanicalbehaviour of elastomeric multiwall carbon nanotubes-poly (glycerol sebacate) nanocomposites for piezoresistivesensors applications.Compos. Sci. Technol., 142, 163–70. DOI: 10.1016/j.compscitech.2017.02.007.
  • 45. Yang F., Hanna M.A., Sun R., 2012. Value-Added uses for crude glycerol–a byproduct of biodiesel production.Biotechnol. Biofuels, 5, 13. DOI: 10.1186/1754-6834-5-13.
  • 46. Yazdani S.S., Gonzalez R., 2007. Anaerobic fermentation of glycerol: a path to economic viability for the biofuelsindustry.Curr. Opin. Biotechnol.,18, 213-219. DOI: 10.1016/j.copbio.2007.05.002.
  • 47. Zabihi F., Koeppe H., Achazi K., Hedtrich S., Haag R., 2019. One-pot synthesis of poly(glycerol- co-succinic acid)nanogels for dermal delivery.Biomacromolecules, 20, 1867–1875. DOI: 10.1021/acs.biomac.8b01741.
  • 48. Zhao X., Noro J., Fu J., Wang H., Silva C., Cavaco-Paulo A., 2018. In-situ’ lipase-catalyzed cotton coating withpolyesters from ethylene glycol and glycerol.Process Biochem., 66, 82–88. DOI: 10.1016/j.procbio.2018.01.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b071bb9f-822b-4ad3-a773-e01714e8eb50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.