PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variable geometry radial inflow turbines with vaneless distributor: theory, research and application

Identyfikatory
Warianty tytułu
PL
Dośrodkowe turbiny z bezłopatkową kierownicą o zmiennych parametrach geometrycznych: teoria, badania empiryczne, zastosowanie
Języki publikacji
EN
Abstrakty
EN
Based on the wide range of experimental studies and comprehensive theoretical analysis of energy conversion processes in the turbine stage, the present scientific work, for the first time, describes the theory and scientific fundamentals on engineering and research of the radial inflow turbines with vaneless volute distributor adjusted through variable geometry at the inlet to the turbine. The concept of alternative radial inflow turbine adjustment could be used in turbocharging systems of the internal combustion engines, fuel cell air supply systems and Organic Rankine Cycle expanders applied in exhaust gas waste heat recovery technologies. The variable geometry in turbine is carried out through variations in the value of effective cross section of the volute acceleration section end. The designs of the adjustable turbines with one and two gas inlet casings were engineered on the base of commercial, constant geometry turbochargers. Based on the experimental research, the different algorithms of VGT adjustment aimed at optimal operational parameters obtainment in load and speed steady states diesel engine characteristics modes were developed. To analyze gas dynamics processes in the adjustable turbine, the special method and original mathematical model of the variable geometry radial inflow turbine with vaneless distributor were developed. The model uses the minimum amount of experimental data as inputs and allows to analyze the gas dynamics processes in characteristic zones of the turbine, calculate its efficiency and estimate the basic losses in the turbine stage. This model is a useful tool in engineering of new designs of adjustable turbines with vaneless distributor. Based on energy-exergy approach used for internal combustion engines analysis, the general theory and corresponding mathematical model were developed for the estimation of quality of exhaust gas energy utilization in diesel engine equipped with adjustable turbocharger and vaneless distributor variable geometry turbine.
PL
W oparciu o szeroki zakres badań empirycznych oraz na podstawie kompleksowej analizy teoretycznej procesów przetwarzania energii zachodzących w turbinie, niniejsza praca naukowa po raz pierwszy opisuje teorię oraz zasady projektowania dośrodkowych turbin z kierownicą bezłopatkową, sterowanych za pomocą zmiany parametrów geometrycznych na wlocie do turbiny. Koncepcja alternatywnego sterowania turbiną dośrodkową może być zastosowana w: układach doładowania silników spalinowych, układach zasilania powietrzem ogniw paliwowych oraz układach realizujących obieg Rankine'a, służących do odzysku energii spalin. Sterowanie parametrów geometrycznych w turbinie odbywa się poprzez zmianę pola powierzchni najmniejszego przekroju kanału dolotowego w turbinie z kierownicą bezłopatkową. Konstrukcje sterowanych turbin z jednym oraz dwoma wlotami zostały zbudowane na podstawie produkowanych seryjnie turbosprężarek o stałych parametrach geometrycznych. Na podstawie wyników badań empirycznych opracowano różne algorytmy sterowania prototypowych turbin dośrodkowych, ukierunkowane na uzyskanie optymalnych wybranych eksploatacyjnych parametrów pracy silnika w stanach statycznych według charakterystyk obciążeniowych i zewnętrznej charakterystyki prędkościowej. Do analizy zjawisk przepływowych w sterowanej turbinie opracowaną autorska metoda oraz oryginalny model matematyczny turbiny z bezłopatkową kierownicą o zmiennych parametrach geometrycznych. Model matematyczny, wykorzystując minimalną liczbę danych empirycznych, pozwała na przeprowadzenie analizy procesów w poszczególnych strefach turbiny, ocenę jej sprawności oraz zbilansowanie podstawowych strat pracy. Model ten jest narzędziem przy projektowaniu nowych konstrukcji sterowanych turbin z bezłopatkową kierownicą. W oparciu o zasady analizy energo-egzergetycznej silników spalinowych, opracowana została teoria oraz narzędzie w postaci modelu matematycznego służącego do oceny skuteczności wykorzystania energii spalin w silniku o zapłonie samoczynnym, wyposażonego w sterowany zespół turbodoładowania z turbiną o zmiennych parametrach geometrycznych i z bezłopatkową kierownicą.
Rocznik
Tom
Strony
3--138
Opis fizyczny
Bibliogr. 173 poz., rys., tab., wykr.
Twórcy
  • Samochody i Maszyny Robocze
Bibliografia
  • 1. 8th International Conference on Turbochargers and Turbocharging. Cambridge: Woodhead Publishing Limited, 2006.
  • 2. A variable geometry turbocharger turbine. Patent CN 107109953A (2014).
  • 3. Alshammari F., Karvountzis-Kontakiotis A., Pesiridis A., Minton T., Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System. Energy Procedia 2017; 129: 285-292.
  • 4. Alshammari F., Radial Turbine Expander Design, Modelling and Testing for Automotive Organic Rankine Cycle Waste Heat Recovery. PhD thesis. London: Brunel University, 2018.
  • 5. Ambrozik A., Marchenko A., Poniewski M., Szokotow N., Analiza egzergetyczna silników spalinowych. Kielce: Politechnika Świętokrzyska, 1998 /in Polish/.
  • 6. AMG Autosport. https://www.mercedesamgfl.com/en/mercedes-amg-fl/amg-fl-news/amg-fl-article/2016-halfway-to-impossible-hybrid-story/ [cited 01.02.2018].
  • 7. ANSYS CFX: Turbomachinery CFD Simulation. https://www.ansys.com/products/fluids/an-sys-cfx [cited 31.07.2018].
  • 8. ANSYS Fluent software. https://www.ansys.com/products/fluids/ansys-fluent [cited 31.07.2018].
  • 9. Arnold P., Jeckel D., Davies P.R., Riviere C., Do G., Petijean D., Solanski S.P., Turbocharger with variable-vane turbine nozzle having a gas pressure-responsive vane clearance control member. Patent US 9765687 B2 (2017).
  • 10. Aulbach L., Bloise F. S., Lu M., Alexander K.W., Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator. Sensors 2017; 17(596): 1-15.
  • 11. AVL Emission tester series 4000. https://www.aecs.net/products [cited 14.08.2018].
  • 12. Balamurugan R., Muruganand S., Study of Surface Roughness by Stylus Profilometer and Binary Laser Speckle B/D Counting Techniques. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 2015; 4 (5): 4559-4563.
  • 13. Bardina J.E., Huang P.G., Coakley T.J., Turbulence Modeling, Validation, Testing and Development. NASA Technical Memorandum 110446, 1997.
  • 14. Bednarski M., Orlinski P., Wojs M., Sikora M., Evaluation of methods for determining the combustion ignition delay in a Diesel engine powered by liquid biofuel. Journal of the Energy Institute 2018; 5(5): 654-667.
  • 15. Bejan A., Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture. International Journal of Energy Research 2002; 26(7): 545-467.
  • 16. Blazek J., Computational Fluid Dynamics: Principles and Applications. Third edition. Butterworth-Heinemann, 2015.
  • 17. BorgWarner Inc. Cartridge a variable turbine geometry. Patent DE202015106692U1 (2015).
  • 18. BorgWarner Inc. Turbine housing with recess. Patent DE 202017105934 Ul (2017).
  • 19. Briggs T.E., Wagner R., Edwards D., Curran S., Nafziger E., A Waste Heat Recovery System for Light Duty Diesel Engines. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering 2010.
  • 20. Bülten B., Althaus W., Weidner E., Stoff H., Experimental and numerical flow investigation of a centripetal supersonic turbine for Organic Rankine Cycle applications. Proceedings of 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC 1. Madrid, March 23-27 2015: 1-12.
  • 21. Butler D.L., Surface Roughness Measurement. Encyclopedia of Microfluidics and Nanofluidics. Boston: Springer, 2014.
  • 22. Lee C.S., Whang C.V., Cho H.M., Supercharging performance of a gasoline engine with a supercharger, KSME International Journal, 1997; Vol. 11 (5): 556-564.
  • 23. Cerdoun M., Ghenaiet A., Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition. International Journal of Rotating Machinery 2016; Volume 2016: 1-15.
  • 24. Chłopek Z., Lasocki J., Wójcik P., Badyda A., Experimental investigation and comparison of energy consumption of electric and conventional vehicles due to the driving pattern. International Journal of Green Energy. 2018;15(13): 773-779.
  • 25. Chłopek Z., Lasocki J., Wójcik P., Biedrzycki J., Comparative examination of pollutant emission from an automotive internal combustion engine with the use of vehicle driving tests. Combustion Engines. 2016;164(1): 56-64.
  • 26. Cho H.M., He B.Q., Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions. Environmental Engineering Research 2009; 14 (2): 95-101.
  • 27. Cho H.M., He B.Q., Spark ignition natural gas engine -A review. Energy Conversion and Management 2007; 48 (2): 608-618.
  • 28. Chung T.J., Computational fluid dynamics. Second Edition. New York: Cambridge University Press, 2010.
  • 29. Clino E., Variable geometry turbine for turbocharger system. Patent EP 3 112 608 Al (2017).
  • 30. Cogswell F.J., Gerlach D.W., Wagner T.C., Mulugeta J., Design of an Organic Rankine Cycle for Waste Heat Recovery From a Portable Diesel Generator. ASME Int. Mech. Eng. Congr. Expo 2011; 4 (54907): 707-716.
  • 31. Costall A.W., Gonzalez Hernandez A., Newton P.J., Martinez-Botas R.F., Design methodology for radial turbo expanders in mobile organic Rankine cycle applications. Applied Energy 2015; 157: 1-15.
  • 32. Daily J.W., Nece R.E., Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks. Journal of Basic Engineering 1960; 82(1): 217-230.
  • 33. Das D., Sharma K.R., Majumdar G., Review of Emission Characteristics of Low Heat Rejection Internal Combustion Engines. International Journal of Environmental Engineering and Management 2013; 4(4): 309-314.
  • 34. Design and Function of a Turbocharger: Turbine. http://www.turbos.bwauto.com/products/tur-bochargerTurbine.aspx [cited 05.02.2018] .
  • 35. Dicks A.L., Rand D.J., Fuel Cell Systems Explained. Third Edition. John Wiley & Sons Ltd, 2018.
  • 36. Dixon S.L., Hall C.A., Fluid Mechanics and Thermodynamics of Turbomachinery (Seventh Edition). Oxford: Elsevier Inc, 2014.
  • 37. Dolz V., Novella R., Garcia A., Sanchez J., HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering 2012; 36: 269-278.
  • 38. Estorf M., Peter J., Umland L., Lueck P., Turbine for decompression of exhaust gas and a ful cell system including same. Patent US20160315336A1 (2016).
  • 39. Forouzbakhsh F., Rezanejad Gatabi J., Rezanejad Gatabi I., A new measurement method for ultrasonic surface roughness measurements. Measurement 2009; 42: 702-705.
  • 40. Fajardo D.P., Methodology for the Numerical Characterization of a Radial Turbine under Steady and Pulsating Flow. Doctoral thesis. Valencia, 2012.
  • 41. Feidt M., Costea M., Energy and Exergy Analysis and Optimization of Combined Heat and Power Systems. Comparison of Various Systems. Energies 2012; (5): 3701-3722.
  • 42. Feneleya A., Pesiridisa A., Mahmoudzadeh Andwaria A., Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting - A Review. Renewable and Sustainable Energy Reviews 2016: 1-17.
  • 43. Ferziger J.H., Peric M., Computational Methods for Fluid Dynamics. Third edition. Springer, 2002.
  • 44. Fiaschi D., Manfrida G., Maraschiello F., Design and performance prediction of radial ORC turboexpanders. Applied Energy 2015; 138: 517-532.
  • 45. Furukawa T., Nakamura M., Machida K., Shimokawa K., A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks. SAE Technical Paper 2014-01-0678, 2014.
  • 46. Galindo J., Hoyas S., Fajardo P., Navarro R., Set-Up Analysis and Optimization of CFD Simulations for Radial Turbines. Engineering Applications of Computational Fluid Mechanics 2013; 7(4): 441-460.
  • 47. Galindo J., Francisco J.A., Garcia-Cuevas L.M., Soler P., Experimental validation of a quasi-two-dimensional radial turbine model. International Journal of Engine Research 2018.
  • 48. Ghosh S.K., Sahoo R.K., Sarangi S.K., Mathematical Analysis for Off-Design Performance of Cryogenic Turboexpander. Journal of Fluids Engineering 2011; 133(3): 1-6.
  • 49. Gibson L., Galloway L., Kim S., Spence S., Assessment of turbulence model predictions for a centrifugal compressor simulation. Journal of the Global Power and Propulsion Society 2017; 1: 142-156.
  • 50. Groot P., Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics 2015; 7: 1-65.
  • 51. Grundmeier R., Dabrowska A., Turbine arrangement for air supply systems. Patent DE102016216959A1 (2015).
  • 52. GT-Power Engine simulation software. https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software/ [cited 29.07.2018].
  • 53. Guillaume L., Legros A., Desideri A., Lemort V., Performance of a Radial-Inflow Turbine Integrated in an ORC System and Designed for a WHR on Truck Application: An Experimental Comparison between R245fa and R1233zd. Applied Energy 2017; 186: 408-422.
  • 54. Hellstrom F., Numerical computations of the unsteady flow in a radial turbine. Technical Reports from Royal Institute of Technology. Stockholm, 2008.
  • 55. Hiereth H., Prenninger P., Charging the Internal Combustion Engine. Wien: Springer-Verlag, 2007.
  • 56. Inamdar K H.. Various methodologies for assessment of surface quality. International Journal of Mechanical And Production Engineering 2015; 3(8): 37-40.
  • 57. Jansen W., A method for Calculating the Flow in a Centrifugal Impeller When Entropy Gradients are Present. Royal Society Conference on Internal Aerodynamics (Turbomachinery), Institution of Mechanical Engineers 1967: 133-146.
  • 58. Jawad L.H., Numerical Prediction of a Radial Turbine Performance Designed for Automotive engines Turbocharger. Journal of University of Babylon, Engineering Sciences 2018; 26 (4): 132-146.
  • 59. Jimmy K., Thermodynamic analysis of steam turbines for industrial applications. 39th Industrial Energy Technology Conference, New Orleans June 20-23, 2017.
  • 60. Jinnai Y., Arimizu H., Tashiro N., Tojo M., Yokoyama T., Hayashi N., A Variable Geometry (VG) Turbocharger for Passenger Cars to Meet European Union Emission Regulations. Mitsubishi Heavy Industries Technical Review 2012; 49 (2): 17-26.
  • 61. Johnson H.G., Perry M.L., Turbocompressor impelling fuel recycle in fuel cell power plant. Patent US 7465510 B1 (2008).
  • 62. Kanagaraj T., Mallappa H., Bangalore D., Turbine with variable geometry and bypass channel for an exhaust gas turbocharger. Patent EP 2 937 521 Al (2015).
  • 63. Karpiuk W., Smolec R., Idzior M., DME use in self-ignition engines equipped with common rail injection systems. 2016 International Conference on Sustainable Energy, Environment and Information Engineering (SEEIE 2016). Proceedings Paper 2016: 37-43.
  • 64. Kenneth E., Nichols P.E., How to Select Turbomachinery For Your Application. Arvada: Barber-Nichols Inc, 2015.
  • 65. Kiyarash R., Saad M., Raya K.A., Mean-line modeling and CFD analysis of a miniature radial turbine for distributed power generation systems. International Journal of Low-Carbon Technologies 2016; 11 (2): 157-168.
  • 66. Knirsch S., Weiss U., Zulch S., Kilger M., Die elektrische Aufladung im Audi RS 5 TDI Concept. Motortechnische zeitschrift 2015; 76: 36-41.
  • 67. Knoop A., Pieck B., Godeke H., Loffle R., Air supply device and fuel cell system. Patent DE102016015266A1 (2018).
  • 68. Knoop A., Turbomachine for a power converter, in particular a fuel cell. Patent DE102015007379A1 (2015).
  • 69. Kolchin A., Demidov V., Design of automotive engines. Moscow: Mir Publishers, 1984.
  • 70. Konrad R., Diesel Engine Management Systems and Components. Wiesbaden: Springer Vieweg, 2014.
  • 71. Kruczyński S., Orliński P., Gis W., Influence of physical & chemical properties of natural and plant fuels on fuel spray process in compression ignition engine. IOP Conference Series: Materials Science and Engineering 2018; (421): 1-9.
  • 72. Kruczyński S., Ślęzak M., Gis W., Orliński P., Evaluation of the impact of combustion hydrogen addition on operating properties of self-ignition engine. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (3): 342-347.
  • 73. Lang W., Colonna P., Almbauer R., Assessment of Waste Heat Recovery From a Heavy-Duty Track Engine by Means of an ORC Turbogenerator. J. Eng. Gas Turbines Power 2013; 135 (4): 1-10.
  • 74. Lazzaretto, Andrea & Manente, Giovanni. (2014). A New Criterion to Optimize ORC Design Performance using Efficiency Correlations for Axial and Radial Turbines. International Journal of Thermodynamics. 17(3): 173-181.
  • 75. Leduc P., Smague P., Leroux A., Henry G., Low temperature heat recovery in engine coolant for stationary and road transport applications. Energy Procedia 2017; 129: 834-842.
  • 76. Lintz A., The effect of volute surface roughness on the performance of automotive turbocharger turbines. Journal of the Global Power and Propulsion Society 2017;1: 224-236.
  • 77. Luck D.A., Carter J., Variable geometry turbine. Patent US 9650911 B1 (2017).
  • 78. Luck D.A., Carter J., Variable geometry turbine. Patent US 9816434 B1 (2017).
  • 79. Luft S., Skrzek T., Effect of the boost pressure on basic operating parameters, exhaust emissions and combustion parameters in a dual-fuel compression ignition engine. Combustion Engines 2017; 170(3): 115-120.
  • 80. Marsan A., Moreau S., Analysis of the flow structure in a radial turbine. Proceedings of 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC11. Madrid. March 23-27, 2015: 1-13.
  • 81. Mateos S., Valino G., Zapico P., Fernandez P., Rico J C., Non-Contact Measurement of Surface Roughness by Conoscopic Holography Systems. Proceedings of the World Congress on Engineering London: WCE, 2014.
  • 82. McDonald P.W., The Computation of Transonic Flow through Two-Dimensional Gas Turbine Cascades. ASME 1971; 71 (89): 1-7.
  • 83. Meitner P.L., Glassman A.J., Off-Design Performance Loss Model for Radial Turbines With Pivoting, Variable-Area Stators. NASA Technical Paper 1708. Technical Report SO-C-13, 1980.
  • 84. Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 1994; 32(8): 1598-1605.
  • 85. Merkisz J., Pielecha, J., Radzimirski S., New Trends in Emission Control in the European Union: Switzerland: Springer International Publishing, 2014.
  • 86. Metz D., Werner J., Munz S., Becker M., Charging System for Fuel Cell Applications. BorgWarner Knowledge Library, 2014.
  • 87. Michalik M., Brzeżański M., Wilczyńska-Michalik W., Fisior K., Klimas B., Samek L and Pietras B., Characterisation of solid particles emitted from diesel and petrol engines as a contribution to the determination of the origin of carbonaceous particles in urban aerosol. IOP Conference Series: Materials Science and Engineering 2016; 148: 1-8.
  • 88. Moorhouse D.J., Camberos J.A., Exergy Analysis and Design Optimization for Aerospace Vehicles and Systems. American Institute of Aeronautics and Astronautics, 2011.
  • 89. Moukalled F., Mangani L., Darwish M., The Finite Volume Method in Computational Fluid Dynamics. Switzerland: Springer International Publishing, 2016.
  • 90. Moustapha H., Zelesky M.F., Baines N.C., Japikse D., Axial and Radial Turbines Part 3: Radial Turbine Design, Concepts NREC, White River Junction 2003; 7 (8): 197-326.
  • 91. Mueller L., Verstraete T., CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine. International Journal of Turbomachinery Propulsion and Power 2017; 2 (14): 1-22.
  • 92. Myers S., Shubnell A., Turbocharger turbine with variable nozzle. Patent US 2017/0044925 Al (2017).
  • 93. Mysłowski J., Mysłowski J., A trial to improve fuel-efficiency rates of a turbo-charged engine. Journal of KONES Powertrain and Transport 2008; 15 (3): 375-380.
  • 94. Musil J., Morand N., Micanek V., Klement J., Abel F., Variable-nozzle turbine with means for radial locating of variable-nozzle cartridge. Patent EP 3 282 097 Al (2018).
  • 95. Ohyauchi H., Amano Y., Hanzawa A., Air supply apparatus for fuel cell system. Patent US 4759997 (1988).
  • 96. Oliveira S., Exergy, Green Energy and Technology. London: Springer-Verlag, 2013.
  • 97. Onoda Y, Ishibashi K., Yanagawa K., Sato Y., Measurement of Surface Profile and Layer Cross-section with Wide Field of View and High Precision. Hitachi Review 2016; 65 (7): 243-247.
  • 98. ORC system with 2 stage radial turbine Patent KR20120021509A (2010).
  • 99. ORC turbo power system that can produce heating and cooling. Patent KR101208459B1 (2010).
  • 100. Organic Rankine cycle kilowatt power generation device. Patent CN107355271A (2017).
  • 101. Parker J F., Variable geometry turbine. Patent GB 2525240 A (2014).
  • 102. Peters M., Seume J., Kleine T., Kammeyer J., Groenendijk A., Holthoff O., Exhaust turbine, turbocharger engine and motor vehicle. Patent DE 102015223257 Al (2015).
  • 103. Petrosyancz V.A., Karnauxov Y.Y., Marchenko A.P., Samojlenko D.E., Method for adjusting an inflow turbine provided with vaneless distributor. PCT Patent WO 2006/036134 Al (2006).
  • 104. Pielecha I., Skowron M., Bueschke W., Wisłocki K., Influence of increased exhaust gas recirculation ratio on the thermodynamic processes in CI DI engine. IOP Conference Series: Materials Science and Engineering 2016; 148(1): 1-10.
  • 105. Pohekar P., Alaspure P., Punase P., Tikhe S.G., Automotive Waste Heat Harvesting for Electricity Generation using Thermoelectric Generator A Review. International Research Journal of Engineering and Technology (IRJET) 2018; 5 (2): 477-481.
  • 106. Pourfarzaneh H., Hajilouy-Benisi A., A New Analytical Model of a Radial Turbine and Validation by Experiments. 2010 IEEE Aerospace Conference 2010; 1007: 1-11.
  • 107. Progress report for fuel cell power systems. US department of energy, 2000.
  • 108. Rahbar K., Mahmoud S., Al-Dadah R.K., Optimized efficiency maps and new correlation for performance prediction of ORC based on radial turbine for small-scale applications. 3rd International Seminar on ORC Power Systems. Brussels. October 12-14, 2015.
  • 109. Randy H.S., Paul J.S., Parametric Modeling with SOLIDWORKS 2015. US: SDC Publications, 2015.
  • 110. Rentz F., Variable turbine/compressor geometry. Patent DE102015215356 Al (2015).
  • 111. Researchers publish perspective on fuel cells. US Department of Energy. February, 2018. https://phys.org/news/2018-02-publish-perspective-fuel-cells.html [cited 05.02.2018].
  • 112. Sakellaridis N., Hountalas D., Meanline Modeling of Radial Turbine Performance for Turbo-charger Simulation and Diagnostic Applications. SAE Technical Paper 2013-01-0924, 2013.
  • 113. Salazar F., Belenguer T., Garcia J., Ramos G., On roughness measurement by angular speckle correlation. Metrology and measurement systems 2012; 19(2): 373-380.
  • 114. Salehi R., Shahbakhti M., Alasty A., Vossoughi G.R., Control Oriented Modeling of a Radial Turbine for a Turbocharged Gasoline Engine. 2013 American Control Conference (ACC). Washington, June 17-19, 2013.
  • 115. Samoilenko D., Marchenko A., Cho H.M., Improvement of torque and power characteristics of V-type diesel engine applying new design of Variable geometry turbocharger (VGT). Journal of Mechanical Science and Technology 2017; 31(10): 5021-5027.
  • 116. Samoilenko D., Marchenko A., Prokhorenko A., An alternative method of Variable Geometry Turbine adjustment: a comparative evaluation of alternative method and nozzle ring adjust-ment. Transport Means 2016: Proceedings of the 20th International Scientific Conference 2016: 517-521.
  • 117. Samoilenko D., Cho H.M., Improvement of Combustion Efficiency and Emission Characteristics of IC Diesel Engine operating on ESC cycle applying Variable Geometry Turbocharger (VGT) with Vaneless Turbine Volute. Int. J. Automotive Technology 2013; 14 (4): 521-528.
  • 118. Samoilenko D., The new method of determination of the mean outlet angle in the vaneless volute distributor of the centripetal turbine. Zeszyty Naukowe Instytutu Pojazdow 2018; 115 (1): 47-54.
  • 119. Schuster S., Benra F.K., Dohmen H.J., Application of Euler-Euler Model for Numerical Simulation of a Radial Turbine Working in the Two-Phase Flow Regime. WSEAS Transactions on Fluid Mechanics 2010; 5(4): 276-286.
  • 120. Seong K.C., Jekyoung L., Jeong I L. Comparison of Loss Models for Performance Prediction of Radial Inflow Turbine. International Journal of Fluid Machinery and Systems 2018; 11(1): 97-109.
  • 121. Serrano J.R., Amau F.J., Dolz V., Tiseira A., Cervello C., A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management 2008; 49 (12): 3729-3745.
  • 122. Serrano J.R., Amau F.J., Garcia-Cuevasa L.M., Dombrovsky A., Tartoussi H., Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management 2016; 128: 281-293.
  • 123. Shadreck M.S., Freddie L.1., Radial Turbine Preliminary Design and Modelling. International Journal of Engineering Research & Technology (IJERT) 2017; 6(10): 409-415.
  • 124. Shahabi H.H., Ratnam M.M., Noncontact roughness measurement of turned parts using machine vision. International Journal of Advanced Manufacturing Technology 2010; 46: 275-284.
  • 125. Sipeng Z., Kangyao D., Sheng L., Modeling and extrapolating mass flow characteristics of a radial turbocharger turbine. Energy 2015; 87: 628-637.
  • 126. Spence S.W., Rosborough R.S., Artt D., McCullonEll G., A Direct Performance Comparison of Vaned and Vaneless Stators for Radial Turbines. Journal of Turbomachinery 2006; 129 (1): 53-61.
  • 127. Stefanak P., Hort V., Radial turbine of a turbocharger and turbocharger. Patent DE 102016117345A1 (2016).
  • 128. Sugawara T., Kanazawa T., Imai N., Tachibana Y., Development of Motorized Turbo Compres-sor for Clarity Fuel Cell. SAE Technical Paper 2017-01-1187, 2017.
  • 129. Sun H.H., Beijing B.Z., Hu L., Yi J.J., Curtis E.W., Zhang J., System and methods for a vari-able geometry turbine nozzle. Patent US 2016/0146100 Al (2016).
  • 130. Surtronic 3+ handbook (EN). https://www.taylor-hobson.com/learning-zone/user-guides [cited 28.07.2018]
  • 131. Tan X., Design and performance analysis of gas and liquid radial turbines. A dissertation. Michigan State University, 2016.
  • 132. Technical Reference Solidworks Flow Simulation 2017. Dassault Systemes SolidWorks Corp., 2017.
  • 133. Teng H., Klaver J., Park T., Hunter G.L., Van der Velde B., A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines - WHR System Development. SAE Int. 2011; 1: 1-11.
  • 134. Toro C., Lior N., Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation. Energy 2017; 120: 549-564.
  • 135. Turbine of ORC generation system. Patent KR101669519B1 (2014).
  • 136. Turbine rotor blade and variable capacity turbine. Patent CN 107109943A (2015).
  • 137. Turbochargers. https://cumminsengines.com/vgt-turbocharger [cited 01.02.2018].
  • 138. Turner M J. Stiffness and Deflection Analysis of Complex Structures. Journal of the Aeronauti-cal Sciences 1956; 23(9): 805-823.
  • 139. Ueda T., Iwakami A., Yoshida Y, Tokue N., Nishioka M., Ishii M., Variable geometry system turbocharger. Patent US 20150125275A1 (2015).
  • 140. ValiCek J., Drkik M., Hryniewicz T., HarniCarova M., Rokosz K., Kugnerova M., Bareova K., Brakina D., Non-Contact Method for Surface Roughness Measurement After Machining. Measurement science review 2012; 12(5): 184-188.
  • 141. Variable geometry turbine assembly. Patent KR20160147014A (2014).
  • 142. Variable geometry turbine. Patent CN 107002502A (2014).
  • 143. Variable Geometry Turbos for Diesel Engines. https://turbo.honeywell.com/our-technologies/ vnt-turbochargers/ [cited 01.02.2018].
  • 144. Variable nozzle unit and variable capacity turbocharger. Patent JP 201407152 A (2014).
  • 145. Variable Turbine Area. http://turbocharger.man.eu/technologies/the-variable-turbine-area [cited 01.02.2018].
  • 146. Variable turbine geometry. http://www.turbos.borgwamer.com/en/products/vtg.aspx [cited 01.02.2018].
  • 147. Ventura C.M., Jacobs P.A., Rowlands A. S., Petrie-Repar P., Sauret E., Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach. ASME. Journal of Fluids Engineering 2012; 134(3): 101-113.
  • 148. Venturi M., Sang J., Knoop A., Homburg G., Air Supply System for Automotive Fuel Cell Application. SAE Technical Paper 2012-01-1225, 2012.
  • 149. Vorburger T.V., Rhee H.G., Renegar T.B., Song J.F., Zheng A., Comparison of optical and stylus methods for measurement of surface texture. The International Journal of Advanced Manufacturing Technology 2007; 33(1): 110-118.
  • 150. Waldron T., Brown J.W., Traction drive for fuel cell pump. Patent US 2017/0365866 Al (2017).
  • 151. Wang H., Sang W., Yuan D., Song L., Xin X., Li W., Variable geometry wastegate turbine meeting the requirements of EGR circulation. Patent US 2018/0238226 Al (2018).
  • 152. Wasserbauer C.A., Glassman A.J., FORTRAN program for Predicting the Off-Design Performance of Radial-Inflow Turbine. Technical Note No. TN D-5513. NASA, 1975.
  • 153. Wataru S., Akihiro Y., Hiroaki H., A Study of Aerodynamic Excitation Forces on a Radial Turbine Blade Due to Rotor-Stator Interaction. 11-11 Engineering Review 2017; 50 (2): 42-48.
  • 154. Yamashita Y., Ibaraki S., Sumida K., Ebisu M., Ogita H., Development of Electric Supercharger to Facilitate the Downsizing of Automobile Engines. Mitsubishi Heavy Industries Technical Review 2010; 4 (1): 7-12.
  • 155. Yu W., Sichuan X., Ni H., Air Compressors for Fuel Cell Vehicles: An Systematic Review. SAE Int. J. Alt. Power 2015; 4(1):115-122.
  • 156. Zdenek Z., Oldeich V., Jan M., Application of a Radial Turbine 1-D Model. Journal of Middle European Construction and Design of Cars 2013; 11(1): 1-7.
  • 157. Zdeněk Žák. 1-D Unsteady Model of a Twin Scroll Radial Centripetal Turbine for Turbocharging Optimization. Ph.D Thesis. Prague, 2018.
  • 158. Zienkiewicz O.C., Taylor R.L., The Finite Element Method. 7th Edition. Butterworth-Heinemann, 2013.
  • 159. Байков Б.П., Бордуков В.Г, Иванов П.В., Дейч Р.С., Турбокомпрессоры для наддува дизелей. Справочное пособие. Л: Машиностроение, 1975 (in Russian).
  • 160. Бродянский В.М., Эксергетический метод термодинамического анализа. Москва: Энергия, 1973 (in Russian).
  • 161. Бэр ГД., Техническая термодинамика. Москва: Мир, 1977 (in Russian).
  • 162. Вибе И.И., Новое в рабочем цикле двигателей. Москва: Машгиз, 1962 (in Russian).
  • 163. Глаголев Н.М., Рабочие процессы двигателей внутреннего сгорания. Киев: Машгиз, 1950 (in Russian).
  • 164. Гордеев Н.Н., Селезнев К.П., Чернявский Л.К., Приближенный метод расчета потерь в прямых и изогнутых диффузорах с произвольным законам изменения площади поперечного сечения и его использование для оптимизации элементов турбомашин. Теплоэнергетика 1977; 358: 47-53 (in Russian).
  • 165. Ерощенков С.А., Улучшение топливной экономичности и эксплуатационных характеристик транспортных двигатёлей путем выбора рациональных конструктивных параметров и совершенствования систем регулирования. Дис. докт. техн. наук. Харьков, 1989. (in Russian)
  • 166. Курзон А.Г., Теория судовых паровых и газовых турбин. Л: Судостроение, 1970 (in Russian).
  • 167. Марченко А.П., Петросянц В.А., Самойленко Д.Е., Улучшение технико-экономических показателей транспортного дизеля путем регулирования турбокомпрессора с безлопаточным направляющим аппаратом. Двигатели внутреннего сгорания 2004; 1: 3-б (in Russian).
  • 168. Петросянц В.А., Повышение топливной экономичности быстроходных дизелей с наддувом путем выбора рациональных конструктивных параметров турбин: Дис. канд. техн. Наукю Харьков: ХИИТ, 1983 (in Russian).
  • 169. Разлейцев Н.Ф., Моделирование и оптимизация процесса сгорания в дизелях. Харьков: Вища школа, 1980 (in Russian).
  • 170. Савельев Г.М., Зайченко Е.Н., Турбокомпрессоры и теплообменники наддувочного воздуха автомобильных двигателей. Ярославль: Верхне-волжское книжное издательство, 1983 (in. Russian).
  • 171. Степанов Г.Ю., Основы теории лопаточных машин, комбинированных и газотурбинных двигателей. Москва: Машгиз, 1958 (in Russian).
  • 172. Счастный Е., Повышение топливной экономичности дизеля 6ЧН 12/14 путем оптимизации системы газотурбинного наддува. Автореферат дис. канд. техн. наук. Харьков: ХИИТ, 1986 (in Russian).
  • 173. Чумаков Ю. А., Газодинамический расчет турбин транспортных газотурбинных и комбинированных двигателей. - Москва: МАМИ, 2001 (in Russian).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b070d7ae-f5ba-4aa5-aa82-3611dce2e848
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.