PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Low temperature-ethanol steam reforming over Ni-based catalysts supported on CeO2

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent research has been focused on methods to produce hydrogen. There is growing interest in the properties of hydrogen as an energy carrier and the prospects look good for hydrogen use in fuel cell applications, especially when production processes involve clean, renewable sources. Although natural gas steam reforming is the most common way to obtain hydrogen, ethanol steam reforming (ESR) may reduce the dependence on fossil fuels and cut harmful emissions. The ESR reaction is promoted at high temperatures, being strongly endothermic, but in some cases it can be performed at low temperatures, using this process as a pre-reforming step before conventional methane steam reforming (MSR). The low temperature range could reduce: the thermal duty, costs and CO formation, making the produced hydrogen capable of being fed into a fuel cell. The performances of Ni-based catalysts for ethanol steam reforming in a low temperature range (LT-ESR) were evaluated. In particular, the activity of bimetallic samples, prepared by impregnation and coprecipitation, was monitored in both diluted and concentrated feed stream conditions. By comparing bimetallic catalysts with monometallic ones prepared at different Pt or Ni loadings, it was possible to identify the most suitable sample. 3%wtPt / 10wt%Ni / CeO2 obtained by impregnation achieved the highest performances in terms of both H2 yield and durability, allowing perfect agreement with thermodynamic data. However, during stability tests, reaction plugging phenomena occurred. By changing the water-to-ethanol molar ratio from 3 to 6, a considerable increase in durability was observed. The investigation of exhaust catalysts through various characterization techniques was helpful for studying in detail possible sintering or deactivation occurrence.
Rocznik
Strony
54--66
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • Dipartimento di Ingegneria Industriale, Universita di Salerno Via Giovanni Paolo II, 84084 (SA), Italy
autor
  • Dipartimento di Ingegneria Industriale, Universita di Salerno Via Giovanni Paolo II, 84084 (SA), Italy
autor
  • Dipartimento di Ingegneria Industriale, Universita di Salerno Via Giovanni Paolo II, 84084 (SA), Italy
autor
  • Dipartimento di Ingegneria Industriale, Universita di Salerno Via Giovanni Paolo II, 84084 (SA), Italy
  • Tecnimont KT S.p.A. Viale Castello della Magliana 75, 00148 Roma, Italy
Bibliografia
  • [1] X. Zhai, S. Ding, Z. Liu, Y. Jin, Y. Cheng, Catalytic performance of ni catalysts for steam reforming of methane at high space velocity, International journal of hydrogen energy 36 (1) (2011) 482-489.
  • [2] C.-H. Wang, K.-F. Ho, J. Y. Chiou, C.-L. Lee, S.-Y. Yang, C.-T. Yeh, C.-B. Wang, Oxidative steam reforming of ethanol over ptru/zro2 catalysts modified with sodium and magnesium, Catalysis Communications 12 (10) (2011) 854-858.
  • [3] H.-S. Roh, I.-H. Eum, D.-W. Jeong, Low temperature steam reforming of methane over ni-ce(1-x)zr(x)o2 catalysts under severe conditions, Renewable Energy 42 (2012) 212-216.
  • [4] J. Xu, G. F. Froment, Methane steam reforming: Ii. diffusional limitations and reactor simulation, AIChE Journal 35 (1) (1989) 97-103.
  • [5] M. Abashar, Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors, International Journal of Hydrogen Energy 29 (8) (2004) 799-808.
  • [6] H.-W. Kim, K.-M. Kang, H.-Y. Kwak, J. H. Kim, Preparation of supported ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane, Chemical Engineering Journal 168 (2) (2011) 775-783.
  • [7] S.-K. Ryi, J.-S. Park, D.-K. Kim, T.-H. Kim, S.-H. Kim, Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production, Journal of Membrane Science 339 (1) (2009) 189-194.
  • [8] P. Udani, P. Gunawardana, H. C. Lee, D. H. Kim, Steam reforming and oxidative steam reforming of methanol over cuo-ceo2 catalysts, international journal of hydrogen energy 34 (18) (2009) 7648-7655.
  • [9] A. Basagiannis, X. Verykios, Catalytic steam reforming of acetic acid for hydrogen production, International Journal of Hydrogen Energy 32 (15) (2007) 3343-3355.
  • [10] K. Takeishi, H. Suzuki, Steam reforming of dimethyl ether, Applied Catalysis A: General 260 (1) (2004) 111-117.
  • [11] B. S. Kwak, J. Kim, M. Kang, Hydrogen production from ethanol steam reforming over core-shell structured nixoy-, fexoy-, and coxoy-pd catalysts, International Journal of Hydrogen Energy 35 (21) (2010) 11829-11843.
  • [12] A. Demirbas, Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy conversion and management 49 (8) (2008) 2106-2116.
  • [13] M. Li, S. Li, C. Zhang, S. Wang, X. Ma, J. Gong, Ethanol steam reforming over ni/nixmg1-xo: Inhibition of surface nickel species diffusion into the bulk, international journal of hydrogen energy 36 (1) (2011) 326-332.
  • [14] D. K. Liguras, K. Goundani, X. E. Verykios, Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured ni catalysts, Journal of Power Sources 130 (1) (2004) 30-37.
  • [15] K. Vasudeva, N. Mitra, P. Umasankar, S. Dhingra, Steam reforming of ethanol for hydrogen production: thermodynamic analysis, International Journal of Hydrogen Energy 21 (1) (1996) 13-18.
  • [16] A. L. Alberton, M. M. Souza, M. Schmal, Carbon formation and its influence on ethanol steam reforming over ni/al2o3 catalysts, Catalysis Today 123 (1) (2007) 257-264.
  • [17] C. Rossi, C. Alonso, O. Antunes, R. Guirardello, L. Cardozo-Filho, Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production, International Journal of Hydrogen Energy 34 (1) (2009) 323-332.
  • [18] A. Erdohelyi, J. Raskó, T. Kecskés, M. Tóth, M. Dömök, K. Baán, Hydrogen formation in ethanol reforming on supported noble metal catalysts, Catalysis Today 116 (3) (2006) 367-376.
  • [19] L. Hernández, V. Kafarov, Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition, Journal of Power Sources 192 (1) (2009) 195-199.
  • [20] J. L. Silveira, L. B. Braga, A. C. C. de Souza, J. S. Antunes, R. Zanzi, The benefits of ethanol use for hydrogen production in urban transportation, Renewable and Sustainable Energy Reviews 13 (9) (2009) 2525-2534.
  • [21] H.-S. Roh, A. Platon, Y. Wang, D. L. King, Catalyst deactivation and regeneration in low temperature ethanol steam reforming with rh/ceo2-zro2 catalysts, Catalysis Letters 110 (1-2) (2006) 1-6.
  • [22] H.-S. Roh, Y. Wang, D. L. King, A. Platon, Y.-H. Chin, Low temperature and h2 selective catalysts for ethanol steam reforming, Catalysis letters 108 (1-2) (2006) 15-19.
  • [23] A. Boyano, A. Blanco-Marigorta, T. Morosuk, G. Tsatsaronis, Exergoenvironmental analysis of a steam methane reforming process for hydrogen production, Energy 36 (4) (2011) 2202-2214.
  • [24] D. P. Harrison, Z. Peng, Low-carbon monoxide hydrogen by sorption-enhanced reaction, International Journal of Chemical Reactor Engineering 1 (1).
  • [25] E. Aneggi, M. Boaro, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Insights into the redox properties of ceria-based oxides and their implications in catalysis, Journal of Alloys and Compounds 408 (2006) 1096-1102.
  • [26] H. Song, U. S. Ozkan, Changing the oxygen mobility in co/ceria catalysts by ca incorporation: Implications for ethanol steam reforming†, The Journal of Physical Chemistry A 114 (11) (2009) 3796-3801.
  • [27] J. Llorca, N. Homs, J. Sales, P. R. de la Piscina, Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming, Journal of Catalysis 209 (2) (2002) 306-317.
  • [28] F. Aupretre, C. Descorme, D. Duprez, D. Casanave, D. Uzio, Ethanol steam reforming over mgxni1-xal2o3 spinel oxide-supported rh catalysts, Journal of Catalysis 233 (2) (2005) 464-477.
  • [29] A. C. Basagiannis, P. Panagiotopoulou, X. E. Verykios, Low temperature steam reforming of ethanol over supported noble metal catalysts, Topics in catalysis 51 (1-4) (2008) 2-12.
  • [30] T. Yamazaki, N. Kikuchi, M. Katoh, T. Hirose, H. Saito, T. Yoshikawa, M. Wada, Behavior of steam reforming reaction for bio-ethanol over pt/zro2 catalysts, Applied Catalysis B: Environmental 99 (1) (2010) 81-88.
  • [31] A. N. Fatsikostas, D. I. Kondarides, X. E. Verykios, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol, Catalysis Today 75 (1) (2002) 145-155.
  • [32] J. Sun, X.-P. Qiu, F. Wu, W.-T. Zhu, H2 from steam reforming of ethanol at low temperature over ni/y2o3, ni/la2o3 and ni/al2o3 catalysts for fuel-cell application, International Journal of Hydrogen Energy 30 (4) (2005) 437-445.
  • [33] M. Benito, R. Padilla, J. Sanz, L. Daza, Thermodynamic analysis and performance of a 1kw bioethanol processor for a pemfc operation, Journal of power sources 169 (1) (2007) 123-130.
  • [34] F. Mariño, G. Baronetti, M. Jobbagy, M. Laborde, Cu-ni-k/γ-al2o3 supported catalysts for ethanol steam reforming: formation of hydrotalcite-type compounds as a result of metal-support interaction, Applied Catalysis A: General 238 (1) (2003) 41-54.
  • [35] A. C. Furtado, C. G. Alonso, M. P. Cantao, N. R. C. Fernandes-Machado, Bimetallic catalysts performance during ethanol steam reforming: influence of support materials, international journal of hydrogen energy 34 (17) (2009) 7189-7196.
  • [36] A. Vizcaíno, A. Carrero, J. Calles, Ethanol steam reforming on mg-and ca-modified cu-ni/sba-15 catalysts, Catalysis Today 146 (1) (2009) 63-70.
  • [37] Y. Men, G. Kolb, R. Zapf, V. Hessel, H. Löwe, Ethanol steam reforming in a microchannel reactor, Process safety and environmental protection 85 (5) (2007) 413-418.
  • [38] G. Jacobs, R. A. Keogh, B. H. Davis, Steam reforming of ethanol over pt/ceria with co-fed hydrogen, Journal of Catalysis 245 (2) (2007) 326-337.
  • [39] A. Ruggiero, Hydrogen production by low temperature reforming of bio-ethanol, Ph.D. thesis, University of Salerno (2009).
  • [40] B. Banach, A. Machocki, P. Rybak, A. Denis, W. Grzegorczyk, W. Gac, Selective production of hydrogen by steam reforming of bio-ethanol, Catalysis Today 176 (1) (2011) 28-35.
  • [41] P. Ciambelli, V. Palma, A. Ruggiero, Low temperature catalytic steam reforming of ethanol. 1. the effect of the support on the activity and stability of pt catalysts, Applied Catalysis B: Environmental 96 (1) (2010) 18-27.
  • [42] E. Heracleous, A. Lee, K. Wilson, A. Lemonidou, Investigation of ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies, Journal of Catalysis 231 (1) (2005) 159-171.
  • [43] D. Das, T. N. Veziroglu, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy 26 (1) (2001) 13-28.
  • [44] T. Paryjczak, J. Rynkowski, S. Karski, Thermoprogrammed reduction of cobalt oxide catalysts, Journal of Chromatography A 188 (1) (1980) 254-256.
  • [45] C. de Leitenburg, A. Trovarelli, J. Kašpar, A temperature-programmed and transient kinetic study of co 2 activation and methanation over ceo 2 supported noble metals, Journal of Catalysis 166 (1) (1997) 98-107.
  • [46] S. S.-Y. Lin, H. Daimon, S. Y. Ha, Co/ceo 2-zro 2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming, Applied Catalysis A: General 366 (2) (2009) 252-261.
  • [47] R. McCabe, C. Wong, H. Woo, The passivating oxidation of platinum, Journal of Catalysis 114 (2) (1988) 354-367.
  • [48] A. E. Galetti, M. F. Gomez, L. A. Arrua, M. C. Abello, Ethanol steam reforming over ni/znal2o4-ceo2. influence of calcination atmosphere and nature of catalytic precursor, Applied Catalysis A: General 408 (1) (2011) 78-86.
  • [49] W. Wang, Y. Wang, Steam reforming of ethanol to hydrogen over nickel metal catalysts, International Journal of Energy Research 34 (14) (2010) 1285-1290.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b06f4e1a-1929-4060-8f7b-ac6dc2f53129
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.