PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An empirical model of rainfall intensity as a function of rainfall duration and probability of occurrence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rainfall is one of the main components of the hydrologic cycle; thus, the availability of accurate rainfall data is fundamental for designing and operating water resources systems and infrastructure. This study aims to develop an empirical model of rainfall intensity (It,p) as a function of its probability (p) and duration (t). In 1999-2020, data on the hourly duration of rainfall were collected from automatic rainfall recorder (ARR) gauges. The empirical model has been developed using a statistical approach based on duration (t) and probability (p), and subsequently they have been validated with those obtained from ARR data. The resulting model demonstrates good performance compared with other empirical formulas (Sherman and Ishiguro) as indicated by the percent bias (PBIAS) values (2.35-3.17), ratio of the RMSE (root mean square error) between simulated and observed values to the standard deviation of the observations (RSR, 0.028-0.031), Nash-Sutcliffe efficiency (NSE, 0.905-0.996), and index of agreement (d, 0.96-0.98) which classified in the rating of “very good” in model performance. The reliability of the estimated intensity based on the empirical model shows a tendency to decrease as duration (t) increases, and a good accuracy mainly for the rainfall intensity for shorter periods (1-, 2-, and 3-hours), whereas low accuracy for long rainfall periods. The study found that the empirical model exhibits a reliable estimate for rainfall intensity with small recurrence intervals (Tr) 2-, 5-, 10-, and a 20-year interval and for a shorter duration (t). Validation results confirm that the rainfall intensity model shows good performance; thus, it could be used as a reliable instrument to estimate rainfall intensity in the study area.
Wydawca
Rocznik
Tom
Strony
182--193
Opis fizyczny
Bibliogr. 32 poz., mapa, tab., wykr.
Twórcy
  • University of Brawijaya, Faculty of Engineering, Water Resources Engineering Department, MT. Haryono Street No. 167, 65145, Malang, Indonesia
  • University of Brawijaya, Faculty of Engineering, Water Resources Engineering Department, MT. Haryono Street No. 167, 65145, Malang, Indonesia
  • University of Brawijaya, Faculty of Engineering, Water Resources Engineering Department, MT. Haryono Street No. 167, 65145, Malang, Indonesia
  • University of Brawijaya, Faculty of Engineering, Water Resources Engineering Department, MT. Haryono Street No. 167, 65145, Malang, Indonesia
Bibliografia
  • ADI S. 2013. Karakterisasi bencana banjir bandang di Indonesia [Characterization of flash flood disaster in Indonesia]. Jurnal Sains dan Teknologi Indonesia. Vol. 15 p. 42–51. DOI 10.29122/jsti.v15i1.938.
  • ALAM M.A., EMURA K., FARNHAM C., YUAN J. 2018. Best-fit probability distributions and return periods for maximum monthly rainfall in Bangladesh. Climate. Vol. 6 p. 1–16. DOI 10.3390/cli6010009.
  • AL SALEEM S.S. 2018. Rainfall-runoff analysis for sustainable stormwater drainage for the city of Madinah, Saudi Arabia. Arabian Journal for Science and Engineering. Vol. 43 p. 1955–1967. DOI 10.1007/s13369-017-2892-5.
  • BEN-ZVI A. 2009. Rainfall intensity-duration-frequency relationships derived from large partial duration series. Journal of Hydrology. Vol. 367 p. 104–114. DOI 10.1016/j.jhydrol.2009.01.007.
  • BHAT M.S., ALAM A., AHMAD B., KOTLIA B.S., FAROOQ H., TALOOR A.K., AHMAD S. 2019. Flood frequency analysis of river Jhelum in Kashmir basin. Quaternary International. Vol. 507 p. 288–294. DOI 10.1016/j.quaint.2018.09.039.
  • BLANCHET J., CERESETTI D., MOLINIÉ G., CREUTIN J.D. 2016. A regional GEV scale-invariant framework for intensity–duration–frequency analysis. Journal of Hydrology. Vol. 540 p. 82–95. DOI 10.1016/j.jhydrol.2016.06.007.
  • DA SILVA L.V., CASAROLI D., EVANGELISTA A.W.P., ALVES JÚNIOR J., BATTISTI R. 2019. Rainfall intensity-duration-frequency relationships for risk analysis in the region of Matopiba, Brazil. Revista Brasileira de Engenharia Agricola e Ambiental. Vol. 34 p. 247–254. DOI 10.1590/0102-77863340239.
  • DAKHEEL A.A. 2017. Drawing curves of the rainfall intensity duration frequency (IDF) and assessment equation intensity rainfall for Nasiriyah City, Iraq. Journal of Thi-Qar University. Vol. 12 p. 63–78. DOI 10.13140/RG.2.2.35460.42886.
  • DORNELES V.R., DAMÉ R.C.F., TEIXEIRA-GANDRA C.F.A., VEBER P.M., KLUMB G.B., RAMIREZ M.A.A. 2019. Modeling of probability in obtaining intensity-duration-frequency relationships of rainfall occurrence for Pelotas, RS, Brazil. Revista Brasileira de Engenharia Agricola e Ambiental. Vol. 23 p. 499–505. DOI 10.1590/1807-1929/agriambi.v23n7p499-505.
  • GHANMI H., BARGAOUI Z., MALLET C. 2016. Estimation of intensity-duration-frequency relationships according to the property of scale invariance and regionalization analysis in a Mediterranean coastal area. Journal of Hydrology. Vol. 541 p. 38–49. DOI 10.1016/j.jhydrol.2016.07.002.
  • GROUNDS M.A., LECLERC J.E., JOSLYN S. 2018. Expressing flood likelihood: Return period versus probability. Weather, Climate, and Society. Vol. 10 p. 5–17. DOI 10.1175/WCAS-D-16-01071.
  • GUO X., CUI P., LI Y., MA L., GE Y., MAHONEY W.B. 2016. Intensity-duration threshold of rainfall-triggered debris flows in the Wenchuan Earthquake affected area, China. Geomorphology. Vol. 253 p. 208–216. DOI 10.1016/j.geomorph.2015.10.009.
  • GUTIERREZ-LOPEZ A., HERNANDEZ S.B.J., SANDOVAL C.E. 2019. Physical parameterization of IDF curves based on short-duration storms. Water. Vol. 11 p. 1–14. DOI 10.3390/w11091813.
  • HARISUSENO D., BISRI M., TUNGGUL S. 2020. Inundation controlling practice in urban area: Case study in residential area of Malang, Indonesia. Journal of Water and Land Development. No. 46 p. 112–120. DOI 10.24425/jwld.2020.134203.
  • HARISUSENO D., CAHYA E.N. 2020. Determination of soil infiltration rate equation based on soil properties using multiple linear regression. Journal of Water and Land Development. No. 47 p. 77–88. DOI 10.24425/jwld.2020.135034.
  • HARISUSENO D., KHAERUDDIN D.N., HARIBOWO R. 2019. Time of concentration based infiltration under different soil density, water content, and slope during a steady rainfall. Journal of Water and Land Development. No. 41 p. 61–68. DOI 10.2478/jwld-2019-0028.
  • HONG M., KIM J., JEONG S. 2018. Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall. Landslides. Vol. 15 p. 523–534. DOI 10.1007/s10346-017-0892-x.
  • JAHNVI M., BHATT P., GANDHI H.M., GOHIL K.B. 2014. Generation of intensity duration frequency curve using daily rainfall data for different return period. Journal of International Academic Research for Multidisciplinary. Vol. 2 p. 717–722. DOI 10.26491/mhwm/79175.
  • JUN C., QIN X., GAN T.Y., TUNG Y.K., DE MICHELE C. 2017. Bivariate frequency analysis of rainfall intensity and duration for urban stormwater infrastructure design. Journal of Hydrology. Vol. 553 p. 374–383. DOI 10.1016/j.jhydrol.2017.08.004.
  • LIMANTARA L.M., HARISUSENO D.H., DEWI V.A.K. 2018. Modelling of rainfall intensity in a watershed: A case study in Amprong watershed, Kedungkandang, Malang, East Java of Indonesia. Journal of Water and Land Development. No. 38 p. 75–84. DOI 10.2478/jwld-2018-0044.
  • MINH NHAT L., Y. TACHIKAWA, TAKARA K. 2006. Establishment of intensity-duration-frequency curves for precipitation in the monsoon area of Vietnam. Annuals of Disaster Prevention Research Institute. Vol. 49B p. 93–103.
  • MORIASI D.N., ARNOLD J.G., VAN LIEW M.W., BINGNER R.L., HARMEL R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50 p. 885–900.
  • RASEL M., HOSSAIN S.M. 2015. Development of rainfall intensity duration frequency (R-IDF) equations and curves for seven divisions in Bangladesh. International Journal of Scientific & Engineering Research. Vol. 6 p. 96–101.
  • SEYAM M., OTHMAN F. 2014. Long-term variation analysis of a tropical river’s annual streamflow regime over a 50-year period. Theoretical and Applied Climatology. Vol. 121 p. 71–85. DOI 10.1007/s00704-014-1225-9.
  • SOEKARNO I., ROHMAT D. 2005. Perbandingan metoda formulasi intensitas hujan untuk kawasan hulu Daerah Aliran Sungai [Comparison of rainfall intensity formulation method for upstream side of watershed]. Journal Geografi GEA. Vol. 5 p. 1–9.
  • SOEKARNO I., ROHMAT D. 2006. Persamaan pola intensitas hujan fungsi dari durasi dan probabilitas hujan untuk kawasan Daerah Aliran Sungai (DAS) Bagian Hulu (Kasus DAS Cimanuk – Jawa Barat) [Rainfall intensity equation from rainfall duration and probability for upstream side of watershed – Case at Cimanuk watershed, East Java]. Jurnal Media Komunikasi BMPTTSSI. Vol. 1 p. 1–16.
  • SOLTANI S., HELFI R., ALMASI P., MODARRES R. 2017. Regionalization of rainfall intensity-duration-frequency using a simple scaling model. Water Resources Management. Vol. 31 p. 4253–4273. DOI 10.1007/s11269-017-1744-0.
  • TUAMA AL-AWADI A. 2016. Assessment of intensity duration frequency (IDF) models for Baghdad City, Iraq. Journal of Applied Sciences Research. Vol. 12(2) p. 7–11.
  • VOLPI E. 2019. On return period and probability of failure in hydrology. Wiley Interdisciplinary Reviews: Water. Vol. 6 p. 1–13. DOI 10.1002/wat2.1340.
  • WAGESHO N., CLAIRE M. 2016. Analysis of rainfall intensity-duration-frequency relationship for Rwanda. Journal of Water Resource and Protection. Vol. 8 p. 706–723. DOI 10.4236/jwarp.2016.87058.
  • WAŁĘGA A. 2016. The importance of calibration parameters on the accuracy of the floods description in the Snyder’s model. Journal of Water and Land Development. No. 28 p. 19–25. DOI 10.1515/jwld-2016-0002.
  • ZOPE P.E., ELDHO T.I., JOTHIPRAKASH V. 2016. Development of rainfall intensity duration frequency curves for Mumbai City, India. Journal of Water Resource and Protection. Vol. 8 p. 756–765. DOI 10.4236/jwarp.2016.87061.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b068ce4d-8df0-4adf-8f54-ea5834d577f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.