PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fast and robust level set motion-assisted deformable registration method for volumetric CT guided lung intervention

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the accurate deformable registration method for image-guided lung interventions, including lung nodule biopsy and radiofrequency ablation of lung tumours. A level set motion assisted deformable registration method for computed tomography (CT) images was proposed and its accuracy and speed were compared with those of other conventional methods. Fifteen 3D CT images obtained from lung biopsy patients were scanned. Each scan consisted of diagnostic and preoperative CT images. Each deformable registration method was initially evaluated with a landmark-based affine registration algorithm. Various deformable registration methods such as level set motion, demons, diffeomorphic demons, and b-spline were compared. Visual assessment by two expert thoracic radiologists using five scales showed an average visual score of 3.2 for level set motion deformable registration, whereas scores were below 3 for other deformable registration methods. In the qualitative assessment, the level set motion algorithm showed better results than those obtained with other deformable registration methods. A level set motion based deformable registration algorithm was effective for registering diagnostic and preoperative volumetric CT images for image-guided lung intervention.
Twórcy
autor
  • Medical Device Development Center, Deagu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
autor
  • Department of Radiology, Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
autor
  • Department of Radiology, Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
autor
  • Department of Radiology, Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
Bibliografia
  • [1] Cleary K, Peters TM. Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 2010;(12):119–42.
  • [2] Peters TM, Clark JA, Pike GB, Henri C, Collins L, Leksell D, et al. Stereotactic neurosurgery planning on a personalcomputer-based work station. J Digit Imaging 1989;(2):75–81.
  • [3] Markelj P, Tomaževič D, Likar B, Pernuš F. A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 2010;(16):642–61.
  • [4] Ungi T, Lasso A, Fichtinger G. Open-source platforms for navigated imaged-guided interventions. Med Image Anal 2016;(33):181–6.
  • [5] Gunay G, Ha LM, Walsum TV. Semi-automated registration of pre-and intra-operative liver CT for image-guided interventions. Proc. SPIE 9784, medical imaging 2016: image processing 97841N (2016/03/21); 2016.
  • [6] Muhanna N, Cui L, Chan H, Burgess L, Jin CS, MacDonald TD, et al. Multimodal image-guided surgical and photonamic interventions in head and neck cancer: from primary tumor to metastatic drainage. Clin Cancer Res Online 2016, http://clincancerres.aacrjournals.org/content/clincanres/22/4/961.full.pdf [accessed February].
  • [7] Shekhar R, Dandekar O, Bhat V, Philip M, Lei P, Godinez C, et al. Live augmented reality: anew visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg Endosc 2010;(24):1976–85.
  • [8] Fitzpatrick JM, Sonka M. In: Fitzpatrick JM, Hill DLG, Maurer Jr CR, editors. Handbook of medical imaging: medical image processing and analysis. Image registration, vol. 2. Washington: SPIE Press; 2000. p. 488–96.
  • [9] Schreibmann E, Pantalone P, Waller A, Fox T. A measure to evaluate deformable registration fields in clinical setting. J Appl Clin Med Phys 2012;(13):126–39.
  • [10] Maintz J, Viergever M. A survey of medical image registration. Med Image Anal 1998;(2):1–36.
  • [11] Li M, Miller K, Joldes GR, Doyle B, Garlapati RR, Kikinis R, et al. Patient-specific biomedical model as whole-body CT image registration tool. Med Image Anal 2015;(22):22–34.
  • [12] Song Y, Totz J, Thompson S, Johnsen S, Barratt D, Schneider C, et al. Locally rigid, vessel-based registration for laparoscopic liver surgery. Int J Comput Assist Radiol Surg 2015;(10):1951–61.
  • [13] Schwarz CG, Jones DT, Gunter JL. Contributions of imprecision in PET-MRI rigid registration to imprecision in amyloid PET SUVR measurements. Hum Bain Mapp 2017; (38):3323–36.
  • [14] Panda R, Agrawal S, Sahoo M, Nayak R. A novel evolutionary rigid body docking algorithm for medical image registration. Swarm Evol Comput 2017;(33):108–18.
  • [15] Nigris DD, Collins DL, Arbel T. Fast rigid registration of preoperative magnetic resonance images to intra-operative ultrasound for neurosurgery based on high confidence gradient orientations. Int J CARS 2013;(8):659–61.
  • [16] Lee H, Lee J, Kim N, Lyoo IK, Shin YG. Robust and fast shell registration in PET and MR/CT brain images. Comput Biol Med 2009;(39):961–77.
  • [17] Li M, Castillo E, Luo HY, Zheng XL, Castillo R, Meshkov D, et al. Deformable image registration for temporal subtraction of chest radiographs. Int J Comput Assist Radiol Surg 2014;(4):513–22.
  • [18] Rubeaux M, Joshi N, Dweck MR, Fletcher A, Motwani M, Thomson LE, et al. Demons versus level-set motion registration for coronary 18F-sodium fluoride PET. SPIE Med Imaging )2016;(9784). http://dx.doi.org/10.1117/12.2217179.
  • [19] Su P, Yang J, Lu K, Yu N, Wong ST, Xue Z. A fast CT and Ct-fluoroscopy registration algorithm with respiratory motion compensation for image-guided lung intervention. IEEE Trans Biomed Eng 2013;(60):2034–41.
  • [20] Urschler M, Kluckner S, Bischof H. A framework for comparison and evaluation of nonlinear intrasubject image registration algorithms. Insight J 2007, http://hdl.handle.net/1926/561 [accessed 07 Nov].
  • [21] Kim EY, Johnson H, Williams N. Affine transformation for landmark based registration initializer in ITK. MIDAS J Med Imaging Comput 2011, http://hdl.Handle.net/10380/3299 [accessed 07 Nov].
  • [22] Späth H. Fitting affine and orthogonal transformations between two sets of points. Math Commun 2004;(9):27–34.
  • [23] Vemuri BC, Ye J, Chen Y, Leonard CM. Image registration via level-set motion application to atlas-based segmentation. Med Image Anal 2003;(7):1–20.
  • [24] Vemuri BC, Ye J, Chen Y, Leonard CM. A level-set based approach to image registration. IEEE workshop on mathematical methods in biomedical image analysis. 2000. pp. 86–93.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0652715-8399-465d-8343-73c7cd7ca69f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.