Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents the behavior of a single wall carbon nanotube (SWCNT)/water nanofluid for convective laminar flow inside a straight circular pipe heated by a constant heat flux. Five volume fractions of SWCNT were used to investigate their effect on the heat transfer coefficient, Nusselt number, temperature distribution and velocity field in comparison with pure water flow. One model for each property was tested to calculate the effective thermal conductivity, effective dynamic viscosity, and effective specific heat of the SWCNT/water mixture. The models were extracted from experimental data of a previous work. The outcomes indicate that the rheological behavior of SWCNT introduces a special effect on the SWCNT/water properties, which vary with SWCNT volume fraction. The results show an improvement in the heat transfer coefficient with increasing volume fraction of nanoparticles. The velocity of SWCNT/water nanofluid increased by adding SWCNT nanoparticles, and the maximum increase was registered at 0.05% SWCNT volume fraction. The mixture temperature is increased with the axial distance of the pipe but a reduction in temperature distribution is observed with the increasing SWCNT volume fraction, which reflects the effect of thermophysical properties of the mixture.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
103--119
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Ministry of Science Technology, Directorate of Materials Research, 55509 Al-Jadriya, Iraq
autor
- University of Baghdad, College of Engineering, Al-Jadriya, 10074 Al-Jadriya, Iraq
autor
- Ministry of Education, General Directorate of Baghdad Education, Karkh 2, 10072 Al-Jadriya, Iraq
autor
- Al Nahrain University, College of Science, 10072 Al-Jadriya, Iraq
Bibliografia
- [1] Choi S.U.S; Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., 1995.
- [2] Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E., Grulke E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79(2001), 2252–2254.
- [3] Xie H., Lee H., Youn W., Choi M.: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 94(2003), 8, 4967–4971.
- [4] Xuan Y., Li Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 25(2003), 1, 151–155.
- [5] Wen D., Ding Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Tran. 47(2004), 24, 5181–5188.
- [6] Faulkner D.J., Rector D.R., Davidson J.J., Shekarriz R.: Enhanced heat transfer through the use of nanofluids in forced convection. In: Proc. ASME Int. Mechanical Engineering Cong. Expo., Anaheim, 2004, 219–224..
- [7] Ding Y., Alias H., Wen D., Williams R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Tran. 49(2006), 1–2, 240– 250.
- [8] He Y., Men Y., Liu X., Lu H., Chen,H., Ding Y.: Study on forced convective heat transfer of non-Newtonian nanofluids. J. Therm. Sci. 18(2009), 1, 20–26.
- [9] He Y., Men Y., Zhao Y., Lu H., Ding Y.: Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Appl. Therm. Eng. 29(2009), 10, 1965–1972.
- [10] Garg P., Alvarado J.L., Marsh C., Carlson T.A., Kessler D.A., Annamalai K.: An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Tran. 52(2009), 21–22, 5090–5101.
- [11] Kamali R., Binesh A.R.: Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids. Int. Commun. Heat Mass 37(2010), 8, 1153–1157.
- [12] Mohammed H.A., Bhaskaran G., Shuaib N. H., Abu-Mulaweh H.I.: Influence of nanofluids on parallel flow square microchannel heat exchanger performance. Int. Commun. Heat Mass 38(2011), 1, 1–9.
- [13] Harish S., Ishikawa K., Einarsson E., Aikawa S., Inoue T., Zhao P., Maruyama S.: Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusion. Mater. Express 2(2012), 3, 213–223.
- [14] Nasiri A., Shariaty-Niasar M., Rashidi A. M., Khodafarin R.: Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Tran. 55(2012), 5–6, 1529–1535.
- [15] Sadri R., Ahmadi G., Togun H., Dahari M., Kazi S.N., Sadeghinezhad E., Zubir N.: An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res. Lett. 9(2014), 1, 151.
- [16] Arani A.A.A., Akbari O.A., Safaei M.R., Marzban A., Alrashed A.A., Ahmadi G.R., Nguyen T.K.: Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int. J. Heat Mass Tran. 113(2017), 780–795.
- [17] Sabiha M.A., Mostafizur R.M., Saidur R., Mekhilef S.: Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Tran. 93(2016), 862–871.
- [18] Godson L., Raja B., Lal D.M., Wongwises S.E.A.: Enhancement of heat transfer using nanofluids – An overview. Renew. Sust. Energ. Rev. 14(2010), 2, 629–641.
- [19] Bianco V., Chiacchio F., Manca O., Nardini S.: Numerical investigation of nanofluids forced convection in circular tubes. Appl. Therm. Eng. 29(2009), 17–18, 3632–3642.
- [20] Moraveji M.K., Ardehali R.M.: CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink. Int. Commun. Heat Mass 44(2013), 157–164.
- [21] Vanaki S.M., Ganesan P., Mohammed H.A.: Numerical study of convective heat transfer of nanofluids: A review. Renew. Sust. Energ. Rev. 54(2016), 1212–1239.
- [22] Shah R.K.: Laminar Flow Forced Convection in Ducts. Academic Press, London New York 1978.
- [23] Nanda J., Maranville C., Bollin S.C., Sawall D., Ohtani H., Remillard J.T., Ginder J.M.: Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J. Phys. Chem. C 112(2008), 3, 654–658.
- [24] Garg P., Alvarado J.L., Marsh C., Carlson T.A., Kessler D.A., Annamalai K.: An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Tran. 52(2009), 21–22, 5090–5101.
- [25] Dong R.Y., Cao B.Y.: Anomalous orientations of a rigid carbon nanotube in a sheared fluid. Sci. Rep-UK 4(2014), 6120.
- [26] Minakov A.V., Pryazhnikov M.I., Guzei D.V., Platonov D.V.: Study of the viscosity coefficient and thermal conductivity of suspensions with single-walled carbon nanotubes. Tech. Phys. Lett. 46(2020), 126–129.
- [27] Saeed F.R.; Al-Dulaimi M.A.: Numerical investigation for convective heat transfer of nanofluid laminar flow inside a circular pipe by applying various models. Arch. Thermodyn. 42(2021), 1, 71–95.
- [28] https://www.comsol.com/release/5.4 (accessed 20 May 2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b06339de-252d-4441-a397-d263f9663b23