PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Quantum dots for temperature sensing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantum dots are three-dimensional nanoparticles of semiconductors with typical sizes ranging from 2 to 10 nm. Due to the quantum confinement effect the energy gap increase with the size decreasing resulting in size-depended and fine-tunable optical characteristics. Besides this, the energy structure of a quantum dot with a certain size is highly sensitive to environmental conditions. These specific properties open a wide range of applications starting from optical and optoelectronic devices and ending with biosensing and life science. Temperature is one of those parameters influencing strongly on the optical properties of semiconductor nanocrystals, which make them promising materials for temperature sensing, more often using a fluorescent response. Compared to the conventional organic dyes already applied in this field, quantum dots exhibit a set of advantages, such as high quantum yield and photostability, long fluorescence lifetime, higher Stokes shift, and ability to surface functionalization with targeted organic molecules aimed to provide them biocompatibility. In this review, we briefly discuss the properties of II-VI and assumingly less toxic I-III-VI quantum dots, mechanisms of temperature-induced fluorescence response, and the feasibility of their practical application in the field of thermal sensing.
Czasopismo
Rocznik
Strony
93--111
Opis fizyczny
Bibliogr. 53 poz., il. kolor., wykr.
Twórcy
  • Department of Chemistry and Expertise of Food Products, Yuriy Fedkovych Chernivtsi National University, Ukraine
  • Department of Medical and Pharmaceutical Chemistry Bukovynian State Medical University, Ukraine
  • Department of Chemistry and Expertise of Food Products, Yuriy Fedkovych Chernivtsi National University, Ukraine
Bibliografia
  • [1] Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715. DOI: 10.1021/ja00072a025
  • [2] Pu, Y.; Cai, F.; Wang, D.; Wang, J.-X.; Chen, J.-F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind. Eng. Chem. Res. 2018, 57, 1790-1802. DOI: 10.1021/acs.iecr.7b04836
  • [3] De Arquer, F.P.G.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H.; Baggiolini, A.; Callahan, S.J.; Luo, L.; Zuko, A.; et al. Semiconductor quantum dots: technological progress and future challenges. Science 2021, 373, 8541. DOI: 10.1126/science.aaz8541
  • [4] Vu, T.Q.; Lam, W.Y.; Hatch, E.W.; Lidke, D.S. Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res. 2015, 360, 71-86. DOI: 10.1007/s00441-014-2087-2
  • [5] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763-775. DOI: 10.1038/nmeth.1248
  • [6] Cho, J.; Jung, Y.K.; Lee, J.-K. Kinetic studies on the formation of various II-VI semiconductor nanocrystals and synthesis of gradient alloy quantum dots emitting in the entire visible range. J. Mater. Chem. 2012, 22, 10827-10833.DOI: 10.1039/C2JM16448E
  • [7] Yadav, A.N.; Singh, A.K.; Singh, K. Synthesis, properties, and applications of II-VI semiconductor core/shell quantum dots, in.: Core/shell quantum dots; (Eds.: Tong, X.M.; Wang Z.) 2020, 1-28, Springer: Cham, Switzerland. DOI: 10.1007/978-3-030-46596-4_1
  • [8] Zhou, D.; Lin, M.; Chen. Z.; Sun, H.; Zhang, H.; Sun, H.; Yang, B. Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem. Mater. 2011, 23, 4857-4862. DOI: 10.1021/cm202368w
  • [9] Subila, K.B.; Kumar, G.K.; Shivaprasad, S.M.; Thomas, K.G. Luminescence properties of CdSe quantum dots: role of crystal structure and surface composition. J. Phys. Chem. Lett. 2013, 4, 2774-2779. DOI: 10.1021/jz401198e
  • [10] Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H.V. White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007, 18, 065709. DOI: 10.1088/0957-4484/18/6/065709
  • [11] Tang, H.; Zhong, J.; Chen, W.; Shi, K.; Mei, G.; Zhang, Y.; Wen, Z.; Müller-Buschbaum, P.; Wu, D.; Wang, K.; Wei Sun, X. Lead sulfide quantum dot photodetector with enhanced responsivity through a two-step ligand-exchange method. ACS Appl. Nano Mater. 2019, 2, 6135-6143. DOI: 10.1021/acsanm.9b00889
  • [12] Wu, R.; Wang, S.; Zhou, Y.; Long, J.; Dong, F.; Zhang, W. Chromium-based metal-organic framework MIL-101 decorated with CdS quantum dots for the photocatalytic synthesis of imines. ACS Appl. Nano Mater. 2019, 2, 6818-6827. DOI: 10.1021/acsanm.9b01264
  • [13] Kokal, R.K.; Bredar, A.R.C.; Farnum, B.H.; Deepa, M. Solid-state succinonitrile/sulfide hole transport layer and carbon fabric counter electrode for a quantum dot solar cell. ACS Appl. Nano Mater. 2019, 2, 7880-7887. DOI: 10.1021/acsanm.9b01264
  • [14] Bhandari, S.; Pramanik, S.; Biswas, N.K.; Roy, S.; Pan, U.N. Enhanced luminescence of a quantum dot complex following interaction with protein for applications in cellular imaging, sensing, and white-light generation. ACS Appl. Nano Mater. 2019, 2, 2358-2366. DOI: 10.1021/acsanm.9b00233
  • [15] Xie, R.; Rutherford, M.; Peng, X. Formation of high-quality I−III−VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691-5697. DOI: 10.1021/ja9005767
  • [16] Regulacio, M.D.; Win, K.Y.; Lo, S.L.; Zhang, S.Y.; Zhang, X.; Wang, S.; Zheng, Y. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale 2013, 5, 2322-2327. DOI: 10.1039/C3NR34159C
  • [17] Soares, J.X.; Wegner, K.D.; Ribeiro, D.S.; Melo, A.; Häusler, I.; Santos, J.L.; Resch-Genger, U. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control. Nano Res. 2020, 13, 2438-2450. DOI: 10.1007/s12274-020-2876-8
  • [18] Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221-12237. DOI: 10.1021/am404084d
  • [19] Park, S.H.; Hong, A.; Kim, J.-H.; Yang, H.; Lee, K.; Jang, H.S. Highly bright yellow-green-emitting cuins2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 6764-6771. DOI: 10.1021/acsami.5b00166
  • [20] Ruan, C.; Zhang, Y.; Lu, M.; Ji, C.; Sun, C.; Chen, X.; Chen, H.; Colvin, V.L.; Yu, W.W. White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication. Nanomaterials 2016, 6, 13. DOI: 10.3390/nano6010013
  • [21] Lu, H.; Hu, Z.; Zhou, W.; Wie, J.; Zhang, W.; Xie, F.; Guo, R. Synthesis and structure design of I-III-VI quantum dots for white light-emitting diodes. Mat. Chem. Front. 2022, 6, 418-429. DOI: 10.1039/D1QM01452H
  • [22] Ganguly, P.; Mathew, S.; Clarizia, L.; Kumar, R.S.; Akande, A.; Hinder, S.J.; Breen, A.; Pillai, S.C. Ternary metal chalcogenide heterostructure (AgInS2-TiO2) nanocomposites for visible light photocatalytic applications. ACS Omega 2020, 5, 406-421. DOI: 10.1021/acsomega.9b02907
  • [23] Liu, S.; Na, W.; Pang, S.; Shi, F.; Su, X. A label-free fluorescence detection strategy for lysozyme assay using CuInS2 quantum dots. Analyst 2014, 139, 3048-3054. DOI: 10.1039/C4AN00160E
  • [24] Maji, S.K. Luminescence-tunable ZnS-AgInS2 nanocrystals for cancer cell imaging and photodynamic therapy. ACS Appl. Bio Mater. 2022, 5, 1230-1238. DOI: 10.1021/acsabm.1c01247
  • [25] Perner, V.; Rath, T.; Pirolt, F.; Glatter, O.; Wewerka, K.; Letofsky-Papst, I.; Zach, P.; Hobisch, M.; Kunert, B.; Trimmel, G. Hot injection synthesis of CuInS2 nanocrystals using metal xanthates and their application in hybrid solar cells. New J. Chem. 2019, 43, 356-363. DOI: 10.1039/C8NJ04823A
  • [26] Hashemkhani, M.; Loizidou, M.; MacRobert, A.J.; Yagci Acar, H. One-step aqueous synthesis of anionic and cationic AgInS2 quantum dots and their utility in improving the efficacy of ALA-based photodynamic therapy. Inorg. Chem. 2022, 61, 2846-2863. DOI: 10.1021/acs.inorgchem.1c03298
  • [27] Zhong, H.Z.; Zhou, Y.; Ye, M.F.; He, Y.J.; Ye, J.P.; He, C.; Yang, C.H.; Li, Y.F. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater. 2008, 20, 6434-6443. DOI: 10.1021/cm8006827
  • [28] Li, X.; Tu, D.; Yu, S.; Song, X.; Lian, W.; Wei, J.; Shang, X.; Li, R.; Chen, X. Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals. Nano Res. 2019, 12, 1804-1809. DOI: 10.1007/s12274-019-2435-3
  • [29] Hamanaka, Y.; Ogawa, T.; Tsuzuki, M.; Kuzuya, T. Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure. J. Phys. Chem. C 2011, 115, 1786-1792. DOI: 10.1021/jp110409q
  • [30] Valerini, D.; Cretí, A.; Lomascolo, M.; Manna, L.; Cingolani, R.; Anni, M. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B 2005, 71, 1-6. DOI: 10.1103/PhysRevB.71.235409
  • [31] Gaponenko, M.S.; Lutich, A.A.; Tolstik, N.A.; Onushchenko, A.A.; Malyarevich, A.M.; Petrov, E.P.; Yumashev, K.V. Temperature-dependent photoluminescence of PbS quantum dots in glass: evidence of exciton state splitting and carrier trapping. Phys. Rev. B 2010, 82, 1-9. DOI: 10.1103/PhysRevB.82.125320
  • [32] Yu, H.C.Y.; Leon-Saval, S.G.; Argyros, A.; Barton, G,W. Temperature effects on emission of quantum dots embedded in polymethylmethacrylate. Appl Opt. 2010, 49, 2749-2752. DOI: 10.1364/AO.49.002749
  • [33] Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; Donegá, C.D.M.; Meijerink, A. High-temperature luminescence quenching of colloidal quantum dots. ACS Nano 2012, 6, 9058-9067. DOI: 10.1021/nn303217q
  • [34] Morello, G.; Giorgi, M.D.; Kudera, S.; Manna, L.; Cingolani, R.; Anni, M. Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots. J. Phys. Chem. C 2007, 111, 5846-5849. DOI: 10.1021/jp068307t
  • [35] Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149-154. DOI: 10.1016/0031-8914(67)90062-6
  • [36] Allahverdi, C.; Yükselici, M.H. Temperature dependence of absorption band edge of CdTe nanocrystals in glass. New J. Phys. 2008, 10, 103029. DOI: 10.1088/1367-2630/10/10/103029
  • [37] Vyhnan, N.; Khalavka, Y. Size-dependent temperature sensitivity of photoluminescence peak position of CdTe quantum dots. Luminescence 2014, 29, 952-954. DOI: 10.1002/bio.2600
  • [38] Joshi, A.; Narsingi, K.Y.; Manasreh, M.O.; Davis, E.A.; Weaver, B.D. Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell nanocrystals embedded into an ultraviolet curable resin. Appl. Phys. Lett. 2006, 89, 131907. DOI: 10.1063/1.2357856
  • [39] Murphy, G.P.; Zhang, X.; Bradley, A.L. Temperature-dependent luminescent decay properties of CdTe quantum dot monolayers: impact of concentration on carrier trapping. J. Phys. Chem. C 2016, 120, 26490-26497. DOI: 10.1021/acs.jpcc.6b04734
  • [40] Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301. DOI: 10.1039/C2NR30764B
  • [41] Walker, G.W.; Sundar, V.C.; Rudzinski, C.M.; Wun, A.W.; Bawendi, M.G.; Nocera, D.G. Quantum-dot optical temperature probes. Appl. Phys. Lett. 2003, 83, 3555-3557. DOI: 10.1063/1.1620686
  • [42] Han, B.; Hanson, W.L.; Bensalah, K.; Tuncel, A.; Stern, J.M.; Cadeddu, J.A. Development of quantum dot-mediated fluorescence thermometry for thermal therapies. Ann. Biomed. Eng. 2009, 37, 1230-1239. DOI: 10.1007/s10439-009-9681-6
  • [43] Maestro, L.M.; Rodríguez, E.M.; Rodríguez, F.S.; De La Cruz, M.C.I.; Juarranz, A.; Naccache, R.; Vetrone, F.; Jaque, D.; Capobianco, J.A.; Solé, J.G. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 2010, 10, 5109-5115. DOI: 10.1021/nl1036098
  • [44] Choudhury, D.; Jaque, D.; Rodenas, W.T.; Ramsey, T.; Paterson, L.; Kar, A.K. Quantum dot enabled thermal imaging of optofluidic devices. Lab. Chip 2012, 12, 2414-2420. DOI: 10.1039/C2LC40181A
  • [45] Yang, J.; Ling, Z.; Li, B.Q.; Li, R.; Mei, X. Nanoscale 3D temperature gradient measurement based on fluorescence spectral characteristics of the CdTe quantum dot probe. Opt. Express 2019, 27, 6770-6791. DOI: 10.1364/OE.27.006770
  • [46] Li, S.; Zhang, K.; Yang, J.M.; Lin, L.W.; Yang, H. Single quantum dots as local temperature markers. Nano Lett. 2007, 7, 3102-3105. DOI: 10.1021/nl071606p
  • [47] Haro-González, P.; Martínez-Maestro, L.; Martín, I.R.; García-Solé, J.; Jaque, D. High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. Small 2012, 8, 2652-2658. DOI: 10.1002/smll.201102736
  • [48] Chen, Y.; Luan, W.; Zhang, S.; Yang, F. Quantum-dots based materials for temperature sensing: effect of cyclic heating-cooling on fluorescence. J. Nanoparticle Res. 2019, 21, 185. DOI: 10.1007/s11051-019-4629-8
  • [49] Zhang, P.; Pan, A.; Yan, K.; Zhu, Y.; Hong, J.; Liang, P. High-efficient and reversible temperature sensor fabricated from highly luminescent CdTe/ZnS-SiO2 nanocomposites for rolling bearings. Sens. Actuators A Phys. 2021, 328, 112758. DOI: 10.1016/j.sna.2021.112758
  • [50] Stroyuk, O.; Raevskaya, A.; Spranger, F.; Gaponik, N.; Zahn, D.R.T. Temperature-dependent photoluminescence of silver-indium-sulfide nanocrystals in aqueous colloidal solutions. ChemPhysChem 2019, 20, 1640-1648. DOI: 10.1002/cphc.201900088
  • [51] Matsuda, Y.; Torimoto, T.; Kameya, T.; Kameyama, T.; Kuwabata, S.; Yamaguchi, H.; Niimi, T. Zns-AglnS2 nanoparticles as a temperature sensor. Sens. Actuators B Chem. 2013, 176, 505-508. DOI: 10.1016/j.snb.2012.09.005
  • [52] Ding, Q.; Zhang, X.; Li, L.; Lou, X.; Xu, J.; Zhou, P.; Yan, M. Temperature dependent photoluminescence of composition tunable Zn(x)AgInSe quantum dots and temperature sensor application. Opt. Express 2017, 25, 19065-19076. DOI: 10.1364/OE.25.019065
  • [53] Zhang, H.; Wu, Y.; Gan, Z.; Yang, Y.; Liu, Y.; Tang, P. Wu, D. Accurate intracellular and in vivo temperature sensing based on CuInS2/ZnS QD micelles. J. Mater. Chem. B 2019, 7, 2835-2844. DOI: 10.1039/C8TB03261K
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b05ce09b-83ba-4cc7-856c-3f06fa36b245
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.