PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental studies on reducing permanent magnet losses through segmentation in a fractional slot PMSM with high power density

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of numerical calculations and experimental tests on reducing eddy current losses in permanent magnets by means of segmentation in a high-power fractional slot PMSM. This type of motor allows for obtaining a high value of specific power (kW/kg), but at the same time they are characterized by the problem of eddy current losses in rotor elements. Thus designed and manufactured model of motor, which is the subject of this work, has a maximum power of 50 kW (at 4800 rpm) and a mass of 10.5 kg. Reducing eddy current losses by segmentation of permanent magnets is a well-known and widely described method, but there is a lack of papers showing the results of experimental studies, in particular of high-power density motors. This article presents results of the effectiveness of reducing eddy current losses for several variants of axial and circumferential segmentation. The results of experimental studies were verified and compared with the results of numerical calculations performed in the ANSYS Motor-CAD software.
Rocznik
Strony
art. no. e153225
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, 44-100 Gliwice, Poland
autor
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, 44-100 Gliwice, Poland
autor
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, 44-100 Gliwice, Poland
  • Department of Electrical Power Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic
Bibliografia
  • [1] R.C. Bolam, Y. Vagapov, and A. Anuchin, “A Review of Electrical Motor Topologies for Aircraft Propulsion,” in 2020 55th International Universities Power Engineering Conference (UPEC),Torino, Italy, Sep. 2020, pp. 1–6. doi: 10.1109/UPEC49904.2020.9209783.
  • [2] T. Wolnik, T. Jarek, J. Golec, R. Topolewski, and D. Jastrzębski, “High Power Density Motor for Light Electric Aircraft – Design Study and Lab Tests,” 2023 IEEE Workshop on Electrical Machines Design Control and Diagnosis (WEMDCD), pp. 1–6, 2023.
  • [3] P. Alvarez, M. Satrustegui, I. Elosegui, and M. Martinez-Iturralde, “Review of High Power and High Voltage Electric Motors for Single-Aisle Regional Aircraft,” IEEE Access, vol. 10, pp. 112989-113004, 2022, doi: 10.1109/ACCESS.2022.3215692.
  • [4] X. Zhang and K.S. Haran, “High-specific-power electric machines for electrified transportation applications-technology options,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, USA, Sep. 2016, pp. 1–8. doi: 10.1109/ECCE.2016.7855164.
  • [5] T. Wolnik, T. Jarek, and L. Cyganik, “Improvement Studies of High Power Density Motor for Aviation and Marine Application,” 2023 23rd International Scientific Conference on Electric Power Engineering (EPE), pp. 1–6, 2023.
  • [6] P. Dukalski and R. Krok, “Selected aspects of decreasing weight of motor dedicated to wheel hub assembly by increasing number of magnetic poles,” Energies, vol. 14, p. 917, 2021.
  • [7] T. Wolnik, P. Dukalski, B. Bedkowski, and T. Jarek, “Selected aspects of designing motor for direct vehicle wheel drive,” Prz. Elektrotechniczny, vol. 1, no. 4, pp. 152–155, Apr. 2020, doi: 10.15199/48.2020.04.31.
  • [8] T. Wolnik, V. Styskala, and T. Mlcak, “Study on the selection of the number of magnetic poles and the slot-pole combinations in fractional slot PMSM motor with a high power density,” Energies, vol. 15, no. 1, p. 215, Dec. 2021, doi: 10.3390/en15010215.
  • [9] A.M. EL-Refaie, “Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges,” IEEE Trans. Ind. Electron., 57, 2010, pp. 107–121.
  • [10] E. Król and M. Maciążek, “Vibroacoustic analysis methods of permanent magnets synchronous motors,” Prz. Elektrotechniczny, vol. 1, no. 11, pp. 220–225, 2022, doi: 10.15199/48.2022.11.45.
  • [11] T. Wolnik, S. Opach, Ł. Cyganik, T. Jarek, and V. Szekeres, “Design methods for limiting rotor losses in a fractional slot PMSM motor with high power density,” Arch. Electr. Eng., vol. 71, pp. 963–979, 2022.
  • [12] P. Sergeant and A. Van Den Bossche, “Segmentation of magnets to reduce losses in permanent-magnet synchronous machines,” IEEE Trans. Magn., vol. 44, no. 11 (part 2), pp. 4409–4412, 2008, doi: 10.1109/TMAG.2008.2001347.
  • [13] M. Mirzaei, A. Binder, and C. Deak, “3D analysis of circumferential and axial segmentation effect on magnet eddy current losses in permanent magnet synchronous machines with concentrated windings,” 19th International Conference on Electrical Machines, ICEM 2010, Italy, 2010, pp. 1–6, doi: 10.1109/ICELMACH.2010.5608182.
  • [14] P. Madina, J. Poza, G. Ugalde, and G. Almandoz, “Analysis of non-uniform circumferential segmentation of magnets to reduce eddy-current losses in SPMSM machines,” in Proc. 20th International Conference on Electrical Machines, ICEM 2012, 2012, pp. 79–84, doi: 10.1109/ICElMach.2012.6349843.
  • [15] Q. Chen, D. Liang, S. Jia, and X. Wan, “Analysis of multiphase and multi-layer factional-slot concentrated-winding on PM eddy current loss considering axial segmentation and load operation,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1–6, 2018, doi: 10.1109/TMAG.2018.2841874.
  • [16] T. Fadriansyah, T.D. Strous, and H. Polinder, “Axial segmentation and magnets losses of SMPM machines using 2D FE method,” in Proc. 20th International Conference on Electrical Machines, ICEM 2012, 2012, pp. 577–581, doi: 10.1109/ICElMach.2012.6349927.
  • [17] S. Ruoho, T. Santa-Nokki, J. Kolehmainen, and A. Arkkio, “Modeling magnet length in 2-D finite-element analysis of electric machines,” IEEE Trans. Magn., vol. 45, no. 8, pp. 3114–3120, 2009, doi: 10.1109/TMAG.2009.2018621.
  • [18] K. Yamazaki and Y. Fukushima, “Effect of eddy-current loss reduction by magnet segmentation in synchronous motors with concentrated windings,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 779–788, 2011, doi: 10.1109/TIA.2010.2103915.
  • [19] D. Ouamara, and F. Dubas, “Permanent-Magnet Eddy-Current Losses: A Global Revision of Calculation and Analysis,” Math. Computat. Appl., vol. 24, no. 3, p. 67, 2019, doi: 10.3390/mca24030067.
  • [20] J.D. Ede, K. Atallah, G.W. Jewell, J.B. Wang, and D. Howe, “Effect of Axial Segmentation of Permanent Magnets on Rotor Loss in Modular Permanent-Magnet Brushless Machines,” IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1207–1213, 2007, doi: 10.1109/TIA.2007.904397.
  • [21] A. Wan-Ying Huang, R. Bettayeb, R. Kaczmarek, and J.-C. Vannier, “Optimization of Magnet Segmentation for Reduction of Eddy-Current Losses in Permanent Magnet Synchronous Machine,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 381–387, Jun. 2010, doi: 10.1109/TEC.2009.2036250.
  • [22] D.A. Wills and M.J. Kamper, “Reducing PM eddy current rotor losses by partial magnet and rotor yoke segmentation,” in XIX International Conference on Electrical Machines – ICEM 2010, Italy, Sep. 2010, pp. 1–6, doi: 10.1109/ICELMACH.2010.5607993.
  • [23] P. Upadhayay and V. Patwardhan, “Magnet eddy-current losses in external rotor permanent magnet generator,” in 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Spain, Oct. 2013, pp. 1068–1071, doi: 10.1109/ICRERA.2013.6749911.
Uwagi
This paper was supported and financed by the National Centre for Research and Development (NCBR – Poland), under project LIDER/31/0169/L-12/20/NCBR/2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b05aa9fc-e3e6-48e0-b767-6c25d26687ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.