PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Scaling Reagent for Waters of Different Mineralization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Membrane technologies are widely used for desalination of water. These technologies are environmentally friendly, economical, energy efficient and material efficient. In the absence of pre-treatment of water, the membrane is contaminated, which leads to an increase in the amount of concentrate formation. Discharge of mineralized water leads to physical and chemical pollution of water bodies. Dissolution and removal of these sediments is a complex issue, so the use of sediment inhibitors is important. The use of antiscalants allows to prolong the service life of membrane elements, which, in turn, will reduce the intake of fresh water and reduce the volume of wastewater. The efficiency of gipan as a reagent in the stabilization treatment of low-mineralized, highly mineralized waters at a temperature of 60°C was determined. The dependences of water stability on sediments on the chemical composition of water, inhibitor concentration and time of ultrasonic treatment of gipan were established.
Twórcy
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Life Safety, Physical and Technical Faculty, Oles Honchar Dnipro National University, 72 Haharin Ave., 49010, Dnipro, Ukraine
  • Department of Physical Chemistry, Faculty of Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute, 37/4 Peremogy Ave., 03056 Kyiv, Ukraine
Bibliografia
  • 1. Ang W.L., Mohammad A.W., Benamor A., Hilald N., Leo C.P. 2016. Hybrid coagulation–NF membrane process for brackish water treatment: Effect of antiscalant on water characteristics and membranę fouling. Desalination, 393, 144–150. https://doi.org/10.1016/j.desal.2016.01.010 6
  • 2. Armbruster D., Müller U., Happel O. 2019. Characterization of phosphonate-based antiscalants used in drinking water treatment plants by anion-exchange chromatography coupled to electrospray ionization time-of-flight mass spectrometry and inductively coupled plasma mass spectrometry. Journal of Chromatography A, 1601, 189–204. https://doi.org/10.1016/j.chroma.2019.05.014
  • 3. Barbhuiya, N.H., Misra, U., & Singh, S.P. 2021. Synthesis, fabrication, and mechanism of action of electrically conductive membranes: A review. Environmental Science: Water Research and Technology, 7(4), 671–705. https://doi.org/10.1039/d0ew01070g
  • 4. Cho H., Choi Y., Lee S., Sohn J., Koo J. 2016. Membrane distillation of high salinity wastewater from shale gas extraction: Effect of antiscalants. Desalination and Water Treatment, 57(55), 26718–26729. https://doi.org/10.1080/19443994.2016.1190109
  • 5. Cohen Y., Semiat R., Rahardianto A. 2017. A Perspective on Reverse Osmosis Water Desalination: Quest for Sustainability. AIChE Journal, 63(6), 1771–1784. https://doi.org/10.1002/aic
  • 6. Du X., Zhang Z., Carlson K.H., Lee J., Tong T. 2018. Membrane fouling and reusability in membranę distillation of shale oil and gas produced water: Effects of membrane surface wettability. J. Membr. Sci., 567, 199–208. https://doi.org/10.1016/j.memsci.2018.09.036
  • 7. El-Dakkony S.R., Mubarak M.F., Ali H.R., Gaffer A., Moustafa Y.M., Abdel-Rahman A. 2021. Effective antiscaling performance of ACTF/Nylon 6, 12 nanofiltration composite membrane: Adsorption, membrane performance, and antifouling property. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-021-05969-x
  • 8. Gomelya M.D., Trus I.M., Radovenchyk I.V. 2014. Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 100–105.
  • 9. Hasson D., Shemer H., Sher A. 2011. State of the Art of Friendly "Green" Scale Control Inhibitors: A Review Article. Ind. Eng. Chem. Res., 50(12), 7601–7607. http://dx.doi.org/10.1021/ie200370v
  • 10. He F., Sirkar K.K., Gilron J. 2009. Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation. Journal of Membrane Science, 345(1–2), 53–58. https://doi.org/10.1016/j.memsci.2009.08.021
  • 11. He Z., Lan X., Hu Q., Li H., Li L., Mao J. 2021. Antifouling strategies based on super-phobic polymer materials. Progress in Organic Coatings, 157. https://doi.org/10.1016/j.porgcoat.2021.106285
  • 12. Huang N., Xu Z., Wang W.L., Wang Q., Wu Q.Y., Hu H.Y. 2021. Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: Anti-precipitation property changes and phosphorus removal. Chemosphere, 133027. https://doi.org/10.1016/j.chemosphere.2021.133027
  • 13. Humoud M.S., Roy S., Mitra S. 2020. Enhanced performance of carbon nanotube immobilized membrane for the treatment of high salinity produced water via direct contact membrane distillation. Membranes, 10(11), 1–16. https://doi.org/10.3390/membranes10110325
  • 14. Laqbaqbi M., Sanmartino J.A., Khayet M., GarcíaPayo C., Chaouch M. 2017. Fouling in membranę distillation, osmotic distillation and osmotic membrane distillation. Applied Sciences (Switzerland), 7(4). https://doi.org/10.3390/app7040334
  • 15. Lee H.J., Halali M.A., Baker T., Sarathy S., de Lannoy C.-F. 2020. A comparative study of RO membrane scale inhibitors in wastewater reclamation: Antiscalants versus pH adjustment. Separation and Purification Technology, 240, 116549. https://doi.org/10.1016/j.seppur.2020.116549
  • 16. Liu C., Zhu L., Ji R. 2022. Direct contact membranę distillation (DCMD) process for simulated brackish water treatment: An especial emphasis on impacts of antiscalants. Journal of Membrane Science, 643. https://doi.org/10.1016/j.memsci.2021.120017
  • 17. Liu C., Zhu L., Ji R., Xiong H. 2021. Zero liquid discharge treatment of brackish water by membranę distillation system: Influencing mechanism of antiscalants on scaling mitigation and biofilm formation. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2021.120157
  • 18. Ghani M.S.H., Haan T.Y., Lun A.W., Mohammad A.W., Ngteni R., Yusof K.M.M. 2018. Fouling assessment of tertiary palm oil mill effluent (Pome) membrane treatment for water reclamation. J. Water Reuse Desalin., 8, 412–423. https://doi.org/10.2166/wrd.2017.198
  • 19. Matin A., Rahman F., Shafi H.Z., Zubair S.M. 2019. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions. Desalination, 455, 135–157. https://doi.org/10.1016/j.desal.2018.12.009
  • 20. Ong C.S., Goh P.S., Lau W.J., Misdan N., Ismail A.F. 2016. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination, 393, 2–15. https://doi.org/10.1016/j.desal.2016.01.007
  • 21. Qu F., Yan Z., Yu H., Fan G., Pang H., Rong H., He J. 2020. Effect of residual commercial antiscalants on gypsum scaling and membrane wetting during direct contact membrane distillation. Desalination, 486. https://doi.org/10.1016/j.desal.2020.114493
  • 22. Remeshevska I., Trokhymenko G., Gurets N., Stepova O., Trus I., Akhmedova V. 2021. Study of the Ways and Methods of Searching Water Leaks in Water Supply Networks of the Settlements of Ukraine. Ecol. Eng. Environ. Technol., 22(4), 14–21. https://doi.org/10.12912/27197050/137874
  • 23.Rezaei M., Alsaati A., Warsinger D.M., Hell F., Samhaber W.M. (2020). Long-running comparison of feed-water scaling in membrane distillation. Membranes, 10(8), 1–21. https://doi.org/10.3390/membranes10080173
  • 24. Soukane S., Elcik H., Alpatova A., Orfi J., Ali E., AlAnsary H., Ghaffour N. 2021. Scaling sets the limits of large scale membrane distillation modules for the treatment of high salinity feeds. Journal of Cleaner Production, 287. https://doi.org/10.1016/j.jclepro.2020.125555
  • 25. Trus I., Gomelya M. 2021. Effectiveness nanofiltration during water purification from heavy metal ions. Journal of Chemical Technology and Metallurgy, 56(3), 615–620.
  • 26. Trus I., Gomelya M., Skiba M., Pylypenko T., Krysenko T. 2022. Development of resource-saving technologies in the use of sedimentation inhibitors for reverse osmosis installations. J. Ecol. Eng., 23(1), 206–215. https://doi.org/10.12911/22998993/144075
  • 27. Trus I., Radovenchyk I., Halysh V., Skiba M., Vasylenko I., Vorobyova V., Hlushko O., Sirenko L. 2019. Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water. Journal of Ecological Engineering, 20(8), 107–113. https://doi.org/10.12911/22998993/110767
  • 28. Trus І., Gomelya N., Halysh V., Radovenchyk I., Stepova O., Levytska O. 2020. Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3/6(105), 21–27. https://doi.org/10.15587/1729-4061.2020.206443
  • 29. Trusb I., Gomelya M. 2021. Desalination of mineralized waters using reagent methods. Journal of Chemistry and Technologies, 29(3), 417–424. https://doi.org/10.15421/jchemtech.v29i3.214939
  • 30. Trusb I., Gomelya M., Skiba M., Vorobyova V. 2021. Effectiveness of complexation-nanofiltration during water purification from copper ions. Journal of Chemical Technology and Metallurgy, 56(5), 1008–1015.
  • 31. Wang Z., Lin S. 2017. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res., 112, 38–47. https://doi.org/10.1016/j.watres.2017.01.022
  • 32. Yelemanova A., Aliyarova M., Begimbetova A., Jangaskina A., Temirbekova M. 2021. The Use of Membrane Technologies of the CWTP to Obtain Quality Drinking Water. J. Ecol. Eng., 22(8), 103–110. https://doi.org/10.12911/22998993/140263
  • 33. Yin Y., Jeong N., Minjarez R., Robbins C.A., Carlson K.H., Tong T. 2021. Contrasting behaviors between gypsum and silica scaling in the presence of antiscalants during membrane distillation. Environmental Science and Technology, 55(8), 5335–5346. https://doi.org/10.1021/acs.est.0c07190
  • 34. Yu W., Chen W., Yang H. 2021. Evaluation of structural effects on the antiscaling performance of various graft cellulose-based antiscalants in RO membrane scaling control. Journal of Membrane Science, 620, 118893. https://doi.org/10.1016/j.memsci.2020.118893
  • 35. Yu W., Song D., Chen W., Yang H. 2020. Antiscalants in RO membrane scaling control Water Research, 183, 115985. https://doi.org/10.1016/j.watres.2020.115985
  • 36. Zhang W., Zhang X. 2021. Effective inhibition of gypsum using an ion–ion selective nanofiltration membrane pretreatment process for seawater desalination. Journal of Membrane Science, 632, 119358. https://doi.org/10.1016/j.memsci.2021.119358
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0595049-fd2b-401b-bb22-a4c9e5a0f997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.