PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of contact gaps on the conditions of vehicles supply and wear and tear of catenary wires in a 3 kV DC traction system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Short-term contact losses between a pantograph and a contact wire are not included in the standards nor are they taken into account in evaluating pantograph-contact wire interaction. These contact losses, however, accelerate wear and tear as well as disturb operation of vehicles’ drive systems. The article presents the effects of short-term contact breaks as well as an analysis of impact of contact breakages on a vehicle’s current at 3 kV DC power supply. Results of voltage and current oscillations measured in real conditions when pantograph of a DC driven chopper vehicle was running under isolators were presented. Then a simulation model of a vehicles with ac motors and voltage inverters was derived to undertake simulation experiments verifying operation of such a vehicle in condition similar to those measured in real condition.
Rocznik
Strony
759--768
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Institute of Electrical Power Engineering, Warsaw University of Technology, Warsaw, Poland
  • Institute of Electrical Power Engineering, Warsaw University of Technology, Warsaw, Poland
autor
  • Institute of Electrical Power Engineering, Warsaw University of Technology, Warsaw, Poland
autor
  • Institute of Electrical Power Engineering, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] T. Maciołek and A Szeląg, “Methods of Reducing the Negative Influence of Weather Phenomena, Icing in Particular, on the Operation of an Overhead Catenary”, Ann. Set The Environ. Prot. 18, 640‒651 (2016).
  • [2] G. Gao, J. Hao, et al., “Dynamics of Pantograph – Catenary Arc During the Pantograph Lowering Process”, IEEE Trans. on Plasma Sci. 44(1), 2715–2723. (2016). https://doi.org/10.1109/TPS.2016.2601117
  • [3] A. Mariscotti, “Characterization of power quality transient phenomena of DC railway traction supply”, Acta IMEKO 1(1), article 8, identifier: IMEKO‐ACTA‐01(2012)‐01‐08 (2012).
  • [4] Commission Regulation (EU) No 1301/2014 of 18 November 2014 on the technical specifications for interoperability relating to the ‘energy’ subsystem of the rail system in the Union (2014).
  • [5] G. Mei, W, Zhang, et al., “A hybrid method to simulate the interaction of pantograph and catenary on overlap span”, Veh. Sys. Dyn. 44, 571‒580 (2006).
  • [6] J. Ramos, M. Such, A. Carnicero, and C. Sánchez, “Dynamic simulation of the system pantograph-catenary-vehicle-track”, World Congress Railway Research, Lille France, 9, (2011).
  • [7] A. Rachid, “Pantograph catenary control and observation using the LMI approach,” 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, USA, 2011, pp. 2287‒2292
  • [8] C. Sanchez-Rebollo, J.R. Jimenez-Octavio, and A. Carnicero, “Active control strategy on a catenary – pantograph validated model”, Veh. Syst. Dyn. 51(4), 554–569 (2013). https://doi.org/10.1080/00423114.2013.764455
  • [9] S. Judek and J. Skibicki, “Visual method for detecting critical damage in railway contact strips”, Meas. Sci. Technol. 29(5), 055102 (2018).
  • [10] T. Maciołek, “Flexible contact strip improving co-operation of a pantograph with contact wire”, Przegląd Elektrotechniczny, R89 no 1a (2013).
  • [11] H. Tsuchiya, “Development of a New Pantograph Contact Strip for Ultrahigh-Speed Operations”, Railway Technology Avalanche 14(10), 83 (2006).
  • [12] A. Szeląg, T. Knych, T. Maciołek et al.,”New Material and Design Solutions for Polish Railway Overhead Lines”, The Second International Conference on Railway Technology: Research, Development and Maintenance, Civil-Comp Press, Stirlingshire, UK, Paper 144, Civil-Comp Proceedings, 2014, pp. 144–164.
  • [13] A. Szelag and L. Mierzejewski, “Ground transportation systems”, chapter in Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley, NY, USA, 1999.
  • [14] Y. Shen, Z. Liu and G, Zhang, “PAC Interaction Inspection Using Real-Time Contact Point Tracking”. IEEE Transactions on Instrum. and Meas. 68(2), 4051–4064 (2019). https://doi.org/10.1109/TIM.2018.2884039
  • [15] E. Karakose, M. T. Gencoglu, M. Karakose et al., “A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph-catenary systems”, IEEE Trans. on Ind. Inf. 13(2), 635–643 (2017). https://doi.org/10.1109/TII.2016.2628042
  • [16] Z. Liu, H. Wang, R. Dollevoet, et al. “Ensemble EMD-Based Automatic Extraction of the Catenary Structure Wavelength from the Pantograph-Catenary Contact Force”, IEEE Trans. on Instrum. and Meas. 65(10), 2272–2283 (2016). https://doi.org/10.1109/TIM.2016.2579360
  • [17] H. Wang, and Z. Liu, et al. “Detection of Contact Wire Irregularities Using a Quadratic Time – Frequency Representation of the Pantograph – Catenary Contact Force”, IEEE Trans. on Instrum. and Meas. 65(6), 1385–1397 (2016). https://doi.org/10.1109/TIM.2016.2518879
  • [18] A. Kawecki, T. Knych, M. Auguściuk, et al. “Mechanical parameters of contact wires made of silvered copper”, Tech. of Rail Transp. (TTS) 3, 52‒59 (2007).
  • [19] A. Mariscotti, and D. Giordano, “Electrical Characteristics of Pantograph Arcs in DC Railways: Infrastructure Influence”, 23rd IMEKO TC4 Intern. Symp. Electrical &Electronic Meas. Promote Ind. 4.0, Xi’an, China, 2019, pp. 17‒20.
  • [20] M. Lewandowski, “Analysis of electromechanical phenomena in a rail traction vehicle taking into account adhesion coefficient of driven vehicles”, Prace Naukowe, Elektryka, z.245 OWPW, (2009)
  • [21] M. Lewandowski, “Method of calculations of current harmonics in a current taken from 3 kV DC network by a traction vehicle with asynchronous drive”, Przegląd Elektrotechniczny 86(6), 27‒275, 2010.
  • [22] M. Steczek, P. Chudzik, and A. Szeląg, “Combination of SHE- and SHM-PWM techniques for VSI DC-link current harmonics control in railway applications”, IEEE Trans. on Ind. Electron. 64(10), 7666‒7678 (2017).
  • [23] A. Szeląg and T. Maciołek, “A 3 kV DC electric traction system modernisation for increased speed and trains power demand-problems of analysis and synthesis”, Przegląd Elektrotechniczny 89(3a), 21‒28, (2013).
  • [24] R. Barlik, P. Grzejszczak, B. Leszczyński, and M. Szymczak “Investigation of a High-efficiency and High-frequency 10-kW/800-V Three-phase PWM Converter with Direct Power Factor Control”, Int. Journal of Electron. and Telecom. 65(4), 619‒624 (2019).
  • [25] A. Domino, K. Zymmer, and M. Parchomiuk, “Comparative study between two-level and three-level high-power low-voltage AC-DC converter”, Bull. Pol. Ac.: Tech 67(3), 583‒592 (2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b055831f-17fb-4d9a-a173-83a4bce83a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.