PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time factor influence on soil heavy metal concentration in relation to soil contamination assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ czynnika czasowego na zawartość metali ciężkich w glebie w aspekcie oceny zanieczyszczenia gleby
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the dynamics of changes in the metal concentrations in the soils contaminated with Cd, Pb, and Zn during a 5 year period. Additionally the purpose included assessment of the suitability of 1 M HCl to control soil contamination with heavy metals compared to using of aqua regia method. The study was conducted in concrete-framed microplots, filled with two soils (sandy and silty), which were artificially co-contaminated with Cd, Pb and Zn. There was a gradual decrease in these concentrations during the 5 year period. The concentrations of the metals extracted with 1 M HCl were very similar to the total concentrations. After 5 years of research, the topsoil had the smallest decrease in Pb concentration, which for the sandy, and silty soils was, respectively, by 7% and 9% in relation to the initial value. The concentrations of Cd and Zn decreased by up to about 35% in the sandy soil and by about 20% in the silty soil. Sandy soil contamination with metals poses a potentially higher threat to humans and the environment than silty soil contamination. Therefore, the examination of the sandy soils contamination, as well as of the groundwater occurring in these areas, should be carried out at least once for 5 years. It has been shown that the analytical method using aqua regia can be replaced by 1 M HCl method to track changes of metals concentration in the soil, that occur over time period.
PL
Celem pracy było zbadanie dynamiki zmian zawartości metali w glebach zanieczyszczonych Cd, Pb i Zn w okresie 5-letnim. Dodatkowym celem była ocena przydatności 1 M HCl do kontroli stanu zanieczyszczenia gleby tymi metalami w porównaniu z metodą z użyciem wody królewskiej. Doświadczenie przeprowadzono w obetonowanych mikropoletkach wypełnionych dwoma glebami (piaskową i pyłową), które zostały symulacyjnie skażone Cd, Pb i Zn. Stwierdzono stopniowe obniżanie się zawartości tych metali w glebie wraz z upływem czasu, przy czym zawartości te, oznaczone po ekstrakcji metali z gleby 1 M HCl, były bardzo podobne do zawartości całkowitych oznaczonych z użyciem wody królewskiej. Po 5 latach badań górna warstwa gleby (0–20 cm) wykazywała spadek koncentracji Pb, który w glebie piaskowej i pyłowej wynosił odpowiednio 7% i 9% w stosunku do wartości początkowej. Zawartości Cd i Zn obniżyły się o około 35% w glebie piaskowej i 20% w pyłowej. Badania wykazały, że gleba piaskowa zanieczyszczona metalami stwarza większe potencjalne zagrożenie dla ludzi i środowiska, niż zanieczyszczona gleba pyłowa. Dlatego kontrola zanieczyszczonych gleb piaskowych, jak również wód podziemnych znajdujących się na tym obszarze, powinna być prowadzona co najmniej raz na 5 lat. Wykazano, że w celu śledzenia zmian zawartości badanych metali w glebie, jakie następują w danym okresie czasu, metodę analityczną z użyciem wody królewskiej można zastąpić tańszą i łatwiejszą metodą z użyciem1 M HCl.
Słowa kluczowe
Rocznik
Strony
68--76
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
  • Institute of Soil Science and Plant Cultivation – State Research Institute, Poland
  • Institute of Soil Science and Plant Cultivation – State Research Institute, Poland
Bibliografia
  • 1. Aelion, C.M., Davis, H.T., Lawson, A.B., Cai, B. & McDermott, S. (2014). Temporal and spatial variation in residential soil metal concentrations: Implications for exposure assessments, Environmental Pollution, 185, pp. 365-368.
  • 2. Allen, H.E. (1993). The significance of trace metal speciation for water, sediment and soil quality criteria and standards, Science of the Total Environment, 134, pp. 23-45.
  • 3. Antonkiewicz, J., Kołodziej, B. & Bielińska, E. (2017). Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita, International Journal of Phytoremediation, 19, 4, pp. 309-318.
  • 4. Ash, C., Tejnecky, V., Sebek, O., Houska, J., Chala, A. T., Drahota, P. & Drábek, O. (2015). Redistribution of cadmium and lead fractions in contaminated soil samples due to experimental leaching, Geoderma, 241-242, pp. 126-135.
  • 5. Badawy, S.H., Helal, M.I., Chaudri, A.M., Lawlor, K. & McGrath, S.P. (2002). Soil solid-phase controls lead activity in soil solution, Journal of Environmental Quality, 31, 1, pp. 162-167.
  • 6. Cao, X., Liang, Y, Zhao, L. & Le, H. (2013). Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions, Environmental Science and Pollution Research, 20, pp. 5913-5921.
  • 7. Chandra, R., Prusty, B.A.K. & Azeez, P.A. (2014). Spatial variability and temporal changes in the trace metal content of soils: implications for mine restoration plan, Environmental Monitoring and Assessment, 186, pp. 3661-3671.
  • 8. Chowdhury, M.T.A., Nesa, L., Kashem, M.A. & Imamul Huq, S.M. (2010). Assessment of the phytoavailability of Cd, Pb and Zn using various extraction procedures, Pedologist, 53, 3, pp. 80-95.
  • 9. Dijkstra, J.J., Meeussen, J.C.L. & Comans, R.N.J. (2004). Leaching of heavy metals from contaminated soils: An experimental and modeling study, Environmental Science and Technology, 38, 16, pp. 4390-4395.
  • 10. Fendorf, S., La Force, M.J. & Li, G. (2004). Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead, Journal of Environmental Quality, 33, 6, pp. 2049-2055.
  • 11. Fernandez, R.O., Cervera, J.V.G., Vanderlinden, K., Bojollo, R.C. & Fernandez, P.G. (2007). Temporal and spatial monitoring of the pH and heavy metals in a soil polluted by mine spill. Post cleaning effects, Water, Air, and Soil Pollution, 178, pp. 229-243.
  • 12. Gembarzewski, H. & Korzeniowska, J. (1990). Simultaneous extraction of B, Cu, Fe, Mn, Mo, and Zn from mineral soils and an estimation of the results, Agribiological Research-Zeitschrift fur Agrarbiologie Agrikulturchemie Okologie, 43, pp. 115-127.
  • 13. Jing, Ch., Meng, X. & Korfiatis, G.P. (2004). Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests, Journal of Hazardous Materials, 114, pp. 101-110.
  • 14. Kabala, C., Karczewska, A. & Medynska-Juraszek, A. (2014). Variability and relationships between Pb, Cu, and Zn concentrations in soil solutions and forest floor leachates at heavily polluted sites, Journal of Plant Nutrition and Soil Science, 177, pp. 573-584.
  • 15. Kabata-Pendias, A., Motowicka-Terelak, T., Piotrowska, M., Terelak, H. & Witek, T. (1993). Ocena stopnia zanieczyszczenia gleb i roślin metalami ciężkimi i siarką. (Assessment of contamination level of soil and plants with heavy metals and sulphur). IUNG Pulawy Publisher, Pulawy 1993. (in Polish)
  • 16. Kabata-Pendias, A. (2001). Trace elements in soils and plants. (3rd ed.), CRS Press, Boca Raton, London, New York, Washington, DC 2001.
  • 17. Karczewska, A. (2002). Heavy metals in soils contaminated with the emissions from copper smelters - the forms and solubility, Zeszyty Naukowe AR we Wroclawiu. Rozprawy, 184, pp. 1-159. (in Polish)
  • 18. Kashem, M. A., Singh, B. R., Kondo, T., Huq, Imamul S.,M. & Kawai, S. (2007). Comparison of extractability of Cd, Cu, Pb and Zn with sequential extraction in contaminated and non- -contaminated soils, International Journal of Environmental Science and Technology, 4, 2, pp. 169-176.
  • 19. Korzeniowska, J. & Stanisławska-Glubiak, E. (2017). Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil, Environmental Science and Pollution Research, 24, 17, pp. 14857-14866.
  • 20. Korzeniowska, J. & Stanislawska-Glubiak, E. (2015). Comparison of 1 M HCl and Mehlich 3 for assessment of the micronutrient status of polish soils in the context of winter wheat nutritional demands, Communications in Soil Science and Plant Analysis, 46, 10, pp. 1263-1277.
  • 21. Li, P.J., Stagnitti, F., Xiong, X. & Peterson, J. (2009). Temporal and spatial distribution patterns of heavy metals in soil at a long-standing sewage farm, Environmental Monitoring and Assessment, 149, pp. 275-282.
  • 22. Markiewicz-Patkowska, J., Hursthouse, A. & Przybyla-Kij, H. (2005). The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit, Environment International, 31, pp. 513- 521.
  • 23. Markowicz, A., Płaza, G. & Piotrowska-Seget, Z. (2016). Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils, Archives of Environmental Protection, 42, 4, pp. 3-11.
  • 24. Matos, A.T., Fontes, M.P.F., Costa, L.M. & Martinez, M.A. (2001). Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils, Environmental Pollution, 111, pp. 429-435.
  • 25. Meyer, M., Pesch, R., Schröder, W., Steinnes, E. & Uggerud, H.T. (2014). Spatial patterns and temporal trends of heavy metal concentrations in moss and surface soil specimens collected in Norway between 1990 and 2010, Environmental Sciences Europe, 26:27.
  • 26. Nowack, B., Schulin, R. & Luster, J. (2010). Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability, Environmental Pollution, 158, pp. 3272-3278.
  • 27. Onweremadu, E.U., Eshett, E.T. & Osuji, G.E. (2007). Temporal variability of selected heavy metals in automobile soils, International Journal of Environmental Science and Technology, 4, 1, pp. 35-41.
  • 28. Owoade, O.K., Awotoye, O.O. & Salami, O.O. (2014). Ecological vulnerability: seasonal and spatial assessment of trace metals in soils and plants in the vicinity of a scrap metal recycling factory in Southwestern Nigeria, Environmental Monitoring and Assessment, 186, pp. 6879-6888.
  • 29. Shikhova, L.N. (2008). Seasonal dynamics of the content of heavy metals in arable soils of the Taiga Zone in the Kirov Oblast, Russian Agricultural Sciences, 34, 5, pp. 315-317.
  • 30. Shirkhanloo, H., Mirzahosseini, S.A.H., Shirkhanloo, N., Moussavi-Najarkola, S.A. & Farahani, H. (2015). The evaluation and determination of heavy metals pollution in edible vegetables, water and soil in the south of Tehran province by GIS, Archives of Environmental Protection, 41, 2, pp. 64-74.
  • 31. Sienkiewicz-Cholewa, U., Nowak-Winiarska, K. & Wrobel, S. (2011). Comparison of selected methods for determination of available Zn in contaminated soils, Fresenius Environmental Bulletin, 20, 2a, pp. 427-431.
  • 32. Stanislawska-Glubiak, E. & Korzeniowska, J. (2010). Usefulness of 1 mol HCldcm-3 extractant to assess copper, zinc and nickel contamination in sandy soil, Fresenius Environmental Bulletin, 19, pp. 589-593.
  • 33. Stanislawska-Glubiak, E. & Korzeniowska, J. (2018). Fate of copper in soils from different fertilizer doses in relation to environmental risk assessment, Polish Journal of Environmental Studies, 27, 4, pp.1-7.
  • 34. Vilavert, L., Nadal, M., Schuhmacher, M. & Domingo, J.L. (2012). Concentrations of metals in soils in the neighborhood of a hazardous waste incinerator: assessment of the temporal trends, Biological Trace Element Research, 149, pp. 435-442.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b052e903-adf4-44b2-af5a-31aec2835380
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.