PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of continuous annealing process on various structure parameters of martensite of dual-phase steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial continuous annealing process routes for dual-phase steels are mostly found to be non-isothermal in nature. The present study is an effort to understand the importance of non-isothermal annealing process parameters and their impact on the various metallurgical phenomena; such as recrystallisation and phase transformation behaviours of duel-phase steel. These, in turn, are expected to influence various structure parameters of martensite phase which are critical in determining the strength of duel-phase steel. A dual-phase steel sheet in 67% cold rolled full hard condition was subjected to non-isothermal annealing treatment with varying heating rate and inter-critical annealing temperatures. After processing the samples were investigated for structural parameters of martensite phase using a scanning electron microscope, X-ray diffraction, and nano-indentation technique. It was observed that due to non-isothermal nature of continuous annealing process, the hardness of the martensite phase did not follow the hardness trends as determined from conventional carbon concentration. Further, lattice tetragonality of martensite was also affected by increasing its volume fractions. The annealing process apparently influenced the evolution of texture because of the increasing fraction of martensite in dual-phase steel.
Rocznik
Strony
405--414
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Academy of Scientific and Innovative Research, India & Tata Steel Ltd, Jamshedpur 831001, India
  • CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
  • CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
  • CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
Bibliografia
  • [1] Arcelor Mittal. Workshop presentation on automotive, advanced high strength steels: an economical solution for automotive light-weight structures.
  • [2] Tanaka T, Nishida M, Hashiguchi K, Kato T. Formation and properties of ferrite plus martensite dual phase structures. In: TMS AIME conference proceedings 1979.
  • [3] Thomas G, Koo YJ. Developments in strong, ductile duplex ferritic martensitic steels. In: Proceedings of the structure and properties of dual-phase steels. Warrendale, PA, USA, 18–22 February (1979). https ://escho larsh ip.org/uc/item/8hw50 2fk.
  • [4] Marder AR. Factors affecting the ductility of “dual-phase” alloys. In: Davenport AT, editor. Formable HSLA and dual phase steels. Warrendale: TMS AIME; 1979. p. 87–98.
  • [5] Gerbase J, Embury JD, Hobbs RM. The mechanical behavior of some dual phase steels with emphasis on the initial work hardening rate. In: TMS AIME conference proceedings 1979.
  • [6] Messien P, Herman JC, Greday T et al. Phase transformation and microstructures of inter-critically annealed dual phase steels. In: TMS AIME conference proceedings 1981.
  • [7] Speich GR. Physical metallurgy of dual phase steels. In: Funda-mentals of duel-phase steels, The Metallurgical Society, 1981. pp. 1–45.
  • [8] Tavares SSM, Pedroza PD, Teodósio JR, Gurova T. Mechani-cal properties of a quenched and tempered dual phase steel. Scr Mater. 1999;40(8):887–92.
  • [9] Pierman AP, Bouaziz O, Pardoen T, Jacques PJ, Brassart L. The influence of microstructure and composition on the plastic behavior of dual phase steels. Acta Mater. 2014;73:298–311.
  • [10] Gau JS, Koo JY, Nakagawa A, Thomas G. Microstructure and properties of dual phase steels containing fine precipitates. In: TMS AIME conference proceedings 1981.
  • [11] Peng-Heng C, Preban AG. Effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall. 1985;33:897–903.
  • [12] Lai Q, Bouaziz O, Gouné M, Brassart L, Verdier M, Parry G, Perlade A, Bréchet Y, Pardoen T. Damage and fracture of dual-phase steels: influence of martensite volume fraction. Mater Sci Eng A. 2015;646:322–31.
  • [13] Movahed P, Kolahgar S, Marashi SPH, Pouranvari M, Parvin N. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets. Mater Sci Eng A. 2009;518:1–6.
  • [14] Lai Q, Brassart L, Bouaziz O, Goune M, Verdier M, Parry G, Perlade A, Brechet Y. Influence of martensite volume fraction and hardness on the plastic behaviour of dual-phase steels, experiments and micromechanical modelling. Int J Plast. 2016;80:187–203.
  • [15] Nath SK, Ray S, Mathur VNS, Kapoor ML. Non-isothermal aus-tenitisation kinetics and theoretical determination of inter-critical annealing time for dual phase steels. ISIJ. 1994;34(2):191–7.
  • [16] Huang TT, Gou RB, Dan WJ, Zhang WG. Strain-hardening behav-iors of dual phase steels with microstructure features. Mater Sci Eng. 2016;672A:88–97.
  • [17] Zhang F, Ruimi A, Wo PC, Field DP. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior. Mater Sci Eng. 2016;659A:93–103.
  • [18] Zhao Z, Tong T, Liang J, Yin H, Zhao A, Tang D. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng. 2014;618A:182–8.
  • [19] Ashrafi H, Shamanian M, Emadi R, Saeidi N. A novel and simple technique for development of dual phase steels with excellent ductility. Mater Sci Eng. 2017;680A:197–202.
  • [20] Mazaheri Y, Kermanpur A, Najafizadeh A. A novel route for development of ultrahigh strength dual phase steels. Mater Sci Eng. 2014;619A:1–11.
  • [21] Nakada N, Arakawa Y, Park K-S, Tsuchiyama T, Takaki S. Dual phase structure formed by partial reversion of cold-deformed mar-tensite. Mater Sci Eng. 2012;553A:128–33.
  • [22] Singh V, Adhikary M, Venugopalan T, Chakraborty A, Nanda T, Ravi Kumar B. Role of recrystallization and pearlite dissolution on industrial processing of DP steels. Mater Manuf Processs. 2017;32:1806–16.
  • [23] Ravi Kumar B, Patel NK, Mukherjee K, Walunj M, Mandal GK, Venugopalan T. Ferrite channel effect on ductility and strain hardenability of ultra-high strength dual phase steel. Mater Sci Eng A. 2017;685:187–93.
  • [24] Speich GR, Warlimont H. Yield strength and transforma-tion substructure of low-carbon martensite. J Iron Steel Inst 1968;206:385–92.
  • [25] Hutchinson B, Ryde L, Bate P. ICOTOM-14. Leuven; 2005.
  • [26] Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng A. 2014;604:135–41.
  • [27] Ghassemi-Armaki H, Maaß R, Bhat SP, Sriram S, Greer JR, Kumar KS. Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 2014;62:197–211.
  • [28] Singh M, Das A, Venugopalan T, Mukherjee K, Walunj M, Nanda T, Ravi Kumar B. Impact of martensite spatial distribution on quasi-static and dynamic deformation behavior of dual-phase steel. Metall Mater Trans A. 2018;49A:463–71.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b04db00e-0107-4615-8caa-761815e8325b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.