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Abstract

Portfolio optimization, one of the most rapidly growing field of modern finance, is selec-
tion process, by which investor chooses the proportion of different securities and other
assets to held. This paper studies the influence of membership function’s shape on the re-
sult of fuzzy portfolio optimization and focused on portfolio selection problem based on
credibility measure. Four different shapes of the membership function are examined in the
context of the most popular optimization problems: mean-variance, mean-semivariance,
entropy minimization, value-at-risk minimization. The analysis takes into account both:
the study of necessary and sufficient conditions for the existence of extremes, as well as
the statistical inference about the differences based on simulation.
Keywords: fuzzy variable, membership function, fuzzy portfolio optimization

1 Introduction

Portfolio optimization problem since the pub-
lication of the Markowitz [1] portfolio analysis is
the basis of modern finances and a widely discussed
area. By portfolio we understand the securities set
held by an investor. Portfolio selection is the pro-
cess by which one chooses the securities, deriva-
tives, and other assets to include in a portfolio and
their proportion in whole portfolio. In making secu-
rities selections, one considers the risk, the return,
the ethical implications, and other factors affecting
both of the individual securities and the portfolio
as a whole. Traditionally, the asset’s rate of re-
turns are assumed to be random variables, but in
the 90’s of the last century optimization methods
based on fuzzy logic spread widely, which assume
the return rates to be fuzzy variables. Since 2002,
when the credibility theory was created [2], its nu-
merous dynamic models of portfolio optimization
have developed. In 2005 [3] the first models were
proposed: a mean-variance model, a model of op-

timistic values and a maximum credibility model.
In 2006, Huang developed a credibility maximiza-
tion model and a chance-constrained programming
model [4], next a mean-variance model was ex-
tended to a mean-semivariance model [5]. Then
it was proposed to reduce the risk using entropy
of fuzzy variable [6]. Model mean-variance has
evolved in a minimax mean-variance model [7] and
a mean-variance-skewness model [9]. A review of
fuzzy portfolio optimization models including cred-
ibility models can be found in [8].
One of the problems in the practical implementa-
tion of these methods is the lack of ways to deter-
mine fuzzy returns rates. Considering various meth-
ods raises a question of what shape should a mem-
bership function be. Research on the influence of
membership function shapes is discussed in the area
of fuzzy controls. Koprinkova [10], Marshall [11],
Multani [12], among others, considered it from dif-
ferent points of view. The first two works conclude
that nonlinear MFs i.e. Gaussian are better choice
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than piecewise linear functions. The third one high-
lights that a membership function optimized for a
certain event will unlikely perform well under var-
ious different conditions. It is difficult to find a
similar analysis of the literature on fuzzy portfo-
lio optimization. A problem considered this issue
can be crucial for the returns of the selected portfo-
lios beyond that use more complex types of fuzzy
numbers can lead to an increase in computational
complexity and hence the cost utilization optimiza-
tion model in practice. In the case of portfolio op-
timization study empirical research on real market
data are widespread. But to isolate affects the shape
of fuzzy number on the result of the selection, we
need to use simulation. Otherwise we are unable to
say whether the better/worse outcome of particular
portfolio can be explained by the change in shape,
economic events or market inefficiency. Thus, the
analysis is limited to the comparison of the dis-
tance between vectors and examines the relevance
of these differences. The model present in literature
use mostly triangular fuzzy numbers. Therefore,
the purpose of this article is answer the question
whether a triangular shape is a good approximation
of other shapes. This article will check whether this
is a good approximation of possible shapes and if
the shape of membership function has a significant
impact on the results of the portfolio optimization.
The study covers four different membership func-
tions’ shapes in the context of the most popular op-
timization problems. This paper is organized as fol-
lows: Section 2 presents basic information about
fuzzy variable and fuzzy credibilistic portfolio op-
timization model is presented. Section 3 formulates
the problem and presents the steps of survey. Sec-
tion 4 discusses the results. Section 5 covers the
conclusions.
The study has been prepared as a part of the
research project of the National Science Cen-
ter 2013/09/N/HS4/03761 using Infrastructures PL-
Grid.

2 Preliminaries

To express uncertainty of future returns of as-
sets fuzzy variables are used. In this section brief
reviews of some basic concepts of fuzzy variable

and portfolio selection models are presented within
the framework of credibility theory. Credibility the-
ory and details of fuzzy variable can be found in
[13].

2.1 Fuzzy variable

Let Θ be a non-empty set, and P the power of
set Θ. Each element in P is called an event and Cr a
credibility function, which indicates the credibility
that an event will occur.
A fuzzy variable is defined in [2] as a function from
a credibility space (Θ,P,Cr) to the set of real num-
bers.
In this paper the following shortened term will be
used: (ξ ∈ B) = (θ ∈ Θ|ξ(θ) ∈ B). Suppose ξ is a
fuzzy variable with membership function µξ and x
is a real number. For any B ∈ ℜ and Bc ∈ ℜ, where
Bc is complement of the set B the credibility mea-
sure of event {ξ ∈ B} was defined by Liu and Liu
[2] as follows:

Cr{ξ ∈ B}= 1
2(supx∈Bµ(x)+1− supx∈Bcµ(x)),

∀x ∈ ℜ
(1)

In this paper we will consider fuzzy variables with
four different membership functions (see Fig.1):

1. triangular

µξ =




x−a
b−a , for a ≤ x < b
x−c
b−c , for b ≤ x < c

0 otherwise,
(2)

2. parabolic

µξ =




1− ( x−b
b−a)

2, for a ≤ x < b
1− ( x−b

c−b)
2, for b ≤ x < c

0, otherwise ,

(3)

3. normal 1

µξ =



( x−a

b−a)
2, for a ≤ x < b

( x−c
b−c)

2, for b ≤ x < c
0, otherwise,

(4)

4. SZ type

µξ =




2( x−a
b−a)

2, for a ≤ x < a+b
2

1−2( x−b
b−a)

2, for a+b
2 ≤ x < b

1−2( x−b
c−b)

2, for b ≤ x < b+c
2

2( x−c
c−b)

2, for b+c
2 ≤ x < c

0, otherwise,

(5)

1here the term normal refers to the shape of the membership function according to [13]. In the literature, the term normal fuzzy
set refers also to a situation where the membership function of a set assumes a value between 0 and 1, including 1.
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Figure 1. Shapes of membership functions

The expected value of fuzzy variable is defined
by Liu and Liu [2] as (6):

E [ξ] =
∫ ∞

0
Cr{ξ ≥ x}dx−

∫ 0

−∞
Cr{ξ ≤ x}dx (6)

provided that the two integrals are finite.

Furthermore, the variance is defined in [2] as (7)
and semivariance in [5] as (8).

V [ξ] = E
[
(ξ−E [ξ])2

]
(7)

SV [ξ] = E
[[
(ξ−E [ξ])−

]2
]

(8)

where

(ξ−E [ξ])− =

{
ξ−E [ξ] , for ξ ≤ E [ξ]

0, for ξ > E [ξ] (9)

Note that in the case of symmetric membership
function, variance equals semivariance. A general
case V [ξ] ≥ SV [ξ], because it includes also the
above-expected value deviation.
The entropy measure was presented by Li and Liu
[14] as (10).

H[ξ] =
∫ ∞
−∞ S(Cr(ξ = x))dx,

where S(t) =−t ln(t)− (1− t) ln(1− t)
(10)

The last considered risk measure is value-at-risk.
The VaR of an investment is the credibility of
the greatest loss at some confidence level. Wang,
Watada and Pedrycz [16] defined the credibilistic
VaR as (11).

VaR(α) = sup{x|Cr(η ≥ x)≥ α} (11)

for a risk confidence level 1−α. In this paper we
consider fuzzy variable for return rate. Therefore
credibilistic VaR quantifies the minimum amount x,
which the fuzzy return rate may take with a credi-
bility of no less than α (12).

VaR(α) = in f {x|Cr(ξ ≤ x)≥ α} (12)

Definition (12) in the case of continuous functions
is equivalent to (13).

VaR(α) = sup{x|Cr(ξ ≤ x)≤ α} (13)

Value at risk is defined by (13) and is interpreted
as follows: VaR(α) = y means that there is at most
α percent credibility that the value of fuzzy rate of
return falls below y. Commonly used confidence
levels are 99% and 95%.
In brief Table 1 present the above-mentioned mea-
sures for the considered shapes.

2.2 Portfolio selection problems

Modern portfolio theory attempts to maximize
portfolio expected return for a given amount of port-
folio risk, or equivalently minimize the risk for a
given level of expected return, by carefully choos-
ing the proportions of various assets.
Let: ξ = (ξ1,ξ2, . . . ,ξn) be a vector of fuzzy return
assets 1,2, . . . ,n, x = (x1,x2, . . . ,xn) be a vector of
shares in the portfolio, where xi - the share of i-th
assets in the portfolio. We assume also two standard
constraints for all task:

– that there is no short sale, so ∀ixi ≥ 0

– ∑n
i=1 xi = 1.

In this analysis the expected value of fuzzy return is
taken into consideration as measure of gain and un-
certainty of portfolio is presented by variance (7),
semivariance (8), entropy (10) or value-at-risk (12).
Comprehensive overview of fuzzy portfolio selec-
tion models can be found in [7]. In survey we con-
sider following tasks:
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Table 1. Basic measures for different shapes

Shape 1 2 3 4

E a+2b+c
4

a+b+c
3

a+4b+c
6

a+2b+c
4

SV =V ∗ (b−a)2

6
(b−a)2

4
(b−a)2

12
(b−a)2

6

H c−a
2 (c−a)

π
2 −ln2

3 (c−a) (c−a)(
4
3 + ln2+ (4

√
2)

3 ln
(√

2−1
))(

4
3 +2ln2− 17

12 ln3+
√

2ln(
√

2−1)
3 −

√
2

3 tan−1
(√

2
2

))

VaR∗∗ 2α(b−a)+a
√

1−2α(b−a)+b
√

2α(b−a)+a
√

α(b−a)+a
* for symmetric membership functions
** assuming that α ≤ 0.25

1. credibilistic mean-variance [3]

1.1 the task of maximization expected value

maxE [θ ∈ Θ : ∑xiξi(θ)]
s.t.:V [θ ∈ Θ : ∑xiξi(θ)]≤ ν, (14)

where ν specified maximum acceptable level of
variance.

2.1 the task of minimizing the variance

minV [θ ∈ Θ : ∑xiξi(θ)] ,
s.t.:E [θ ∈ Θ : ∑xiξi(θ)]≥ η (15)

where λ specified expected return rate.

2. mean-semivariance [5]

1.2 the task of maximization expected value

maxE [θ ∈ Θ : ∑xiξi(θ)]
s.t.:SV [θ ∈ Θ : ∑xiξi(θ)]≤ ν, (16)

where ν specified maximum acceptable level of
semivariance.

2.2 the task of minimizing the semivariance

minSV [θ ∈ Θ : ∑xiξi(θ)] ,
s.t.:E [θ ∈ Θ : ∑xiξi(θ)]≥ η (17)

3. mean-entropy [6]

1.3 the task of maximization expected value

maxE [θ ∈ Θ : ∑xiξi(θ)]
s.t.:H [θ ∈ Θ : ∑xiξi(θ)]≤ ν, (18)

where ν specified maximum acceptable level of
entropy.

2.3 the task of minimizing the entropy

minH [θ ∈ Θ : ∑xiξi(θ)] ,
s.t.:E [θ ∈ Θ : ∑xiξi(θ)]≥ η (19)

4. mean-VaR [17]

1.4 the task of maximization expected value

maxE [θ ∈ Θ : ∑xiξi(θ)]
s.t.:VaR [θ ∈ Θ : ∑xiξi(θ)]≤ ν, (20)

where ν specified maximum acceptable level of
value-at-risk.

2.4 the task of minimizing value-at-risk

minVaR [θ ∈ Θ : ∑xiξi(θ)] ,
s.t.:E [θ ∈ Θ : ∑xiξi(θ)]≥ η (21)

If the considered objective is to maximize the
investment return for an appointed level of risk - the
tasks are pointed as 1.*, where * - task number with
particular uncertain measure, or to minimize the in-
vestment risk for a given level of return - the tasks
pointed as 2.*.

3 Research

The aim of the study is to determine whether
the triangular membership function is sufficient to
present a variety of fuzzy returns. So two auxiliary
hypotheses were examined:

1. Optimization result is independent of the shape
of the membership function

2. There are no statistically significant differences
between results of optimization with triangular
fuzzy return rate and with 2, 3, 4 shape fuzzy
return rate.
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The first hypothesis is checked analytically and the
second one empirically.
Due to the difficulties in analytical calculations of
some measurements of uncertainty in the general
case, at first the special case - the symmetric fuzzy
returns are examined. If the results of the special
symmetric case (labeled ’s’ next to the task num-
ber) do not differ from each other, then the test will
be generalized to the asymmetric case (labeled with
’ns’). Optimization tasks are solved in two vari-
ants. First, assuming the same parameters a, b,
c of different shapes (see Fig. 1) - labeled vari-
ant (a), and the other assuming the same value of
parameter b and area under the graph of member-
ship function (see Fig. 1) - labeled variant (b).
Let ai,bi,ci - be parameter a for i− th membership
function’s shape, then in variant (b) the following
formulas occur: (c2 −a2)=

3
4 (c1 −a1), (c3 −a3)=

3
2 (c1 −a1), (c3 −a3) =

3
2 (c1 −a1). This implies

that expected value of fuzzy variable is independent
of the shape and is equal: E[ξ] = a1+2b1+c1

4 .

3.1 Analytical study

The tasks 1.3, 1.4, 2.3, 2.4 are linear program-
ming problems. The basic property of the linear
programming solutions is that if there is an optimal
solution, then it is one of the base solutions.
The tasks 1.1, 1.2, 2.1, 2.2 are quadratic program-
ming problems. Under differentiability, convex-
ity and constraint qualifications, the Karush-Kuhn-
-Tucker (KKT) conditions provide necessary and
sufficient conditions for a solution to be optimal.
Tasks with symmetric membership function satisfy
the regularity constraints for KKT. In the case of
maximization tasks utilizing symmetrical rates of
return, all tasks, regardless of the type and shape
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following form of the tasks’ optimal solutions:

1.1, 1.2

xk =
(b j−a j)−

√
ν
C

(b j−a j)−(bk−ak)
−∑n

i=1
(b j−a j)−(bi−ai)
(b j−a j)−(bk−ak)

ti,

x j =

√
ν
C−(bk−ak)

(b j−a j)−(bk−ak)
−∑n

i=1
(bi−ai)−(b j−a j)
(b j−a j)−(bk−ak)

ti,
∀i̸= j,kxi = ti ≥ 0,

t j = tk = 0
⇔ ((b j > bk ∧ ((bk −ak)≥ (b j −a j))∧

((b j −a j)bk ≥ (bk −ak)b j))∨
(b j < bk ∧ ((bk −ak)≤ (b j −a j))∧
((b j −a j)bk ≤ (bk −ak)b j)))∧

∀bi ≥ (bi−ai)(b j−bk)−bk(b j−a j)+b j(bk−ak)
C((b j−a j)−(bk−ak)).

(22)

1.3

xB =
[
xk x j

]
=
[
⇔ (b j−a j)− ν

C
(b j−a j)−(bk−ak)

ν
C−(bk−ak)

(b j−a j)−(bk−ak)
,
]

(23)
(b j −a j < bk −ak)∧ (b j ≤ bk), (24)

∀i bi ≤
(bi −ai)(b j −bk)−b j(bk −ak)+bk(b j −a j)

C((b j −a j)− (bk −ak))
,

(25)

(b j −a j ≥ bk −ak)∧ (b j > bk). (26)

1.4

for shape 1, 3 and 4:

xk =
C3a j−C1(C2a j−b j)+ν

C1(b j−C2a j)+C3a j−C1(bk−C2ak)−C3ak

x j =
−ν−C3ak−C1(bk−C2ak)

C1(b j−C2a j)+C3a j−C1(bk−C2ak)−C3ak
,

(27)

∀i bi ≥ (b j−bk)(C1(C2ai−bi)−C3ai)+b j(C1(C2ak−bk)−C3ak)
C1(b j−C2a j)+C3a j−C1(bk−C2ak)−C3ak

+
bk(C3a j−C1(C2a j−b j))

C1(b j−C2a j)+C3a j−C1(bk−C2ak)−C3ak
,

(28)
where

C1 =




2α for shape 1 (a),(b),√
2α for shape 3 (a), (b),√
α for shape 4 (a),(b),

(29)

C2 =

{ 3
2 for shape 3 (b),
1 otherwise

(30)

C3 =

{ 3
2 for shape 3 (b),
1 otherwise

(31)

for shape 2:

xk =
b j−C1(C2a j−b j)+ν

C1(b j−C2a j)+b j−C1(bk−C2ak)−bk
,

x j =
−ν−bk−C1(bk−C2ak)

C1(b j−C2a j)+b j−C1(bk−C2ak)−bk
,

(32)
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∀i bi ≥ (b j −bk)((C1(C2ai −bi)−bi)+
b j(C1(C2ak −bk)−bk)+

bk(b j −C1(C2a j −b j)))/(C1(b j −C2a j)+
b j −C1(bk −C2ak)−bk)

, (33)

where

C1 =
{√

1−2α for variant (a),(b) (34)

C2 =

{ 3
4 for variant (b),
1 otherwise

(35)

2.1, 2.2

xk =
b j−η
b j−bk

−∑n
i=1

b j−bi
b j−bk

ti,

x j =
η−bk
b j−bk

−∑n
i=1

bi−bk
b j−bk

ti,
∀i̸= j,kxi = ti,
t j = tk = 0,

⇔ (b j > bk ∧ ((b j −a j)≥ (bk −ak))
∧((b j −a j)bk ≥ (bk −ak)b j))∨
(b j < bk ∧ ((b j −a j)< (bk −ak))
∧((b j −a j)bk > (bk −ak)b j))∧

∀ibi ≥
(bi−ai)(bk−b j)−b j(bk−ak)+bk(b j−a j)

(b j−a j)−(bk−ak)

(36)

2.3

x j =
b j−η
b j−bk

,

xk =
η−bk
b j−bk

,

⇔ ((b j −a j)≤ (bk −ak)∧ (b j < bk))
∨((b j −a j)≥ (bk −ak)∧ (b j > bk))∧
∀ibi ≥

(bi−ai)(bk−b j)−b j(bk−ak)+bk(b j−a j)
(b j−a j)−(bk−ak)

(37)

2.4 for shape 1, 3, 4:

x j =
η−bk
b j−bk

,

xk =
b j−η
b j−bk

,

⇔ ∀iC1(C2ai −bi)−ai ≥
bi(C1(C2a j−b j)−a j−C1(C2ak−bk)+ak)−bk(C1(C2a j−b j)−a j)

b j−bk

+
b j(C1(C2ak−bk)−ak)

b j−bk
,

(38)
where

C1 =




2α for shape 1 (a),(b)√
2α for shape 3 (a), (b)√
α for shape 4 (a), (b)

(39)

C2 =

{ 3
2 for shape 3 (b),
1 otherwise

(40)

for shape 2:

x j =
η−bk
b j−bk

,

xk =
b j−η
b j−bk

,

⇔ ∀iC1(C2ai −bi)−bi ≥
bi(C1(C2a j−b j)−b j−C1(C2ak−bk)+bk)−bk(C1(C2a j−b j)−b j)

b j−bk

+
b j(C1(C2ak−bk)−bk)

b j−bk

(41)
where

C1 =
{√

1−2α for variant (a),(b) (42)

C2 =

{3
4 for variant (b),
1 otherwise

(43)

The following conclusions can be drawn from the
analysis: The optimal solution of the expected
value maximization task at a given maximum value
of entropy, variance, semivariance, value at risk
and conditional value at risk for symmetrical num-
bers does not depend on the adapted shape of the
fuzzy variable. The optimal solution of the en-
tropy minimization task at a given expected value
for symmetrical numbers does not depend on the
adapted shape of the fuzzy variable. The opti-
mal solution of the variance minimization task at
a given expected value for symmetrical numbers
does not depend on the adapted shape of the fuzzy
variable. With a given shape, the solutions of
the entropy minimization and variance (semivari-
ance) minimization tasks at a predetermined mini-
mum expected value are equal, under the condition:
∀ibi >

((bi−ai)(bk−b j)−b j(bk−ak)+bk(b j−a j))
((b j−a j)−(bk−ak)))

.

3.2 Numerical simulation

If the analytical verification showed that the op-
timal portfolio is dependent on the shape of a mem-
bership function, a simulation was performed to
examine the differences between the portfolio ob-
tained with different shapes. In order to exam-
ine differences between selected portfolios accord-
ing to the membership function shape the following
simulation steps have been used:

1. 10 draws of 3 random (or 2 for symmetric
case) parameters defining membership function
µξi(a,b,c),

2. calculation tasks, every task with every shape of
membership function,
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3. calculation differences between optimal share
vectors (between results of tasks using shapes 1
and 2, 1 and 3, 1 and 4),

4. 5000 repetitions of steps 1-3,

5. calculation descriptive statistics,

6. The Wilcoxon signed-ranks test.

After the first step we have simulated value of fuzzy
variable for a collection of 10 assets, from which we
will select portfolios. Step 2 is to solve tasks (14)-
(21) separately for each shape. The solutions are
calculated assuming the minimum expected value is
not less than the average expected value randomly
selected variables (η value) and the maximum un-
certainty measure is not more than the average value
of uncertain measures form selected variables (ν
value). Averages value was selected for coefficients
to provide non-empty set of feasible solutions for
each task. In step 3 - for calculating differences a
different coefficient (1–cosine similarity) is used, so
0 means exactly the same result, 1 indicates a com-
pletely different portfolio.
Beside descriptive statistics of different coefficient,
the Wilcoxon Signed-Rank Test is used to evaluate
of the hypothesis. The Wilcoxon Signed-Rank Test
is the nonparametric test equivalent to the paired
Student’s t-test, t-test for matched pairs, or the t-
-test for dependent samples, when the population
cannot be assumed to be normally distributed. The
null hypothesis in this test is that median difference
between the pairs is zero. More information about
the test can be found in [15]. In considered case
the data collected with the task (1.1-1.4, 2.1-2.5)
for linear shape functions is tested respectively to
the same task result for the shapes: 2, 3 and 4, in
order to determine whether there was a statistically
significant change.

4 Results

As shown in Table 1 variance (semivariance),
entropy for particular shapes differs only in fixed,
so obviously have no effect on the result of mini-
mizing the function, which has been proven analyt-
ically. The results of analytical study concerning
symmetric fuzzy numbers has shown that all the
tasks to maximize the expected value of fuzzy rate
of return and the task of minimizing the value at

risk are dependent on the shape of the membership
function. Analyzing the task of minimizing entropy
with asymmetric fuzzy numbers, the solution is de-
pendent on the shape in variant (a) and independent
in (b).

Table 2. Statistics of different coefficients
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Table 2: Statistics of different coefficients
Shape I–II I–III I–IV

Task Variant (a) (b) (a) (b) (a)/(b)

1.2s*

min 0 0 0 0 0
Q1 0,0190 6,473e-13 4,465e-13 0,0015 0

median 0,0324 0,0062 0,0900 0,0030 0
mean 0,0560 0,0114 0,1153 0,0062 0
Q3 0,0629 0,0117 0,1731 0,0058 0
max 0,5406 0,4949 0,6874 0,4823 0

1.3s

min 0 0 0 0 0
Q1 0,0872 0,2010 0,2883 0,1128 0,0027

median 0,1774 0,3569 0,4381 0,2181 0,0057
mean 0,2135 0,3628 0,4545 0,2503 0,0136
Q3 0,3186 0,4881 0,6070 0,3785 0,0121
max 0,9960 1 1 0,9983 0,4318

1.3ns

min 0 0 0 0 0
Q1 0,1197 0,2013 0,2921 0,1569 0,0048

median 0,2916 0,4307 0,4655 0,3392 0,0102
mean 0,2875 0,4143 0,4904 0,3220 0,0264
Q3 0,4308 0,5746 0,7447 0,4592 0,0222
max 0,9924 1 1 0,9931 0,4922

1.4s

min 0,1599 0,1406 0 0 0
Q1 0,7841 0,7373 0 0 0

median 1 1 0 0 0
mean 0,8757 0,8591 0,0272 0,0043 0,0080
Q3 1 1 0,0203 0 0,0021
max 1 1 0,5515 0,3752 0,4919

1.4ns

min. 0,0187 0,0177 0 0 0
Q1 0,7047 0,6679 0,0040 0 0

median 0,9311 0,8992 0,0636 0,0020 0,0094
mean 0,8343 0,8158 0,1332 0,0190 0,0317
Q3 1 1 0,1880 0,0166 0,0319
max 1 1 1 0,4973 0,6877

2.4s

min 0,4402 0,4402 0 0 0
Q1 1 1 0 0 0

median 1 1 0 0 0
mean 0,9871 0,9870 0,0153 0,0250 0,0120
Q3 1 1 0 0 0
max 1 1 0,5673 0,9031 0,5673

2.4ns

min 0,0020 0 0 0 0
Q1 0,8469 0,8852 0,0020 0 0

median 1 1 0,0106 0 0
mean 0,8890 0,9016 0,0584 0,0553 0,0546
Q3 1 1 0,0455 0,0013 0,0022
max 1 1 0,9865 0,8795 1

* s for symmetric membership functions (ns non-symmetric)
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3. calculation differences between optimal share
vectors (between results of tasks using shapes 1
and 2, 1 and 3, 1 and 4),

4. 5000 repetitions of steps 1-3,

5. calculation descriptive statistics,

6. The Wilcoxon signed-ranks test.
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variable for a collection of 10 assets, from which we
will select portfolios. Step 2 is to solve tasks (14)-
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calculated assuming the minimum expected value is
not less than the average expected value randomly
selected variables (η value) and the maximum un-
certainty measure is not more than the average value
of uncertain measures form selected variables (ν
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to provide non-empty set of feasible solutions for
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cannot be assumed to be normally distributed. The
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between the pairs is zero. More information about
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the data collected with the task (1.1-1.4, 2.1-2.5)
for linear shape functions is tested respectively to
the same task result for the shapes: 2, 3 and 4, in
order to determine whether there was a statistically
significant change.

4 Results

As shown in Table 1 variance (semivariance),
entropy for particular shapes differs only in fixed,
so obviously have no effect on the result of mini-
mizing the function, which has been proven analyt-
ically. The results of analytical study concerning
symmetric fuzzy numbers has shown that all the
tasks to maximize the expected value of fuzzy rate
of return and the task of minimizing the value at

risk are dependent on the shape of the membership
function. Analyzing the task of minimizing entropy
with asymmetric fuzzy numbers, the solution is de-
pendent on the shape in variant (a) and independent
in (b).
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Table 3. P-values of Wilcoxon signed-rank test

Figure 2. Differences - task 1.2 for symmetric
numbers

Figure 3. Differences - task 1.3

Figure 4. Differences - task 1.4

Figure 5. Differences - task 2.4

The tasks: 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3 (only
variant (a)), 2.4 were studied for second hypotheses
by simulation. The descriptive statistics of differ-
ences of solution vectors are included in Table 2.
Boxplots for difference coefficient between vectors
solutions shown in Fig. 2 - 5. On the graph x-axis
presents the different shapes for variants (a) and (b),
y-axis values of coefficient from 0 to 1. Graphs on
the left side show symmetric cases of fuzzy vari-
able (on the right side non-symmetric). P-values
of Wilcoxon signed-rank test are shown in Table 3.
Taking into account the 0,05 significance level the
null hypothesis should be rejected for shape 1 and
2 for task 1.3ns2, 1.4s, 1.4ns, and for shape 1 and 3
for 1.3s(a), 1.3ns, 1.4s, 1.4ns, 2.4s(b), 2.4ns(b). In
short we can say that for tasks using asymmetric
fuzzy numbers change the membership functions
shapes from linear to 2 and 3 shape has a signifi-

2s is for symmetric membership functions, ns non-symmetric

Table 3: P-values of Wilcoxon signed-rank test

Task
shapes: 1 and 2 shapes: 1 and 3 shapes: 1 and 4

(a) (b) (a) (b) (a)/(b)

1.2s* 0,4807 0,3137 0,0265 0,4952 1

1.3s 0,2778 0,0153 9,80e-05 0,1610 0,9509

1.3ns 1,08e-05 2,47e-12 2,54e-17 7,62e-06 0,7225

1.4s 3,63e-58 3,63e-58 0,0056 0,3299 0,1409

1.4ns 3,70e-21 3,70e-21 0,0025 0,0639 0,0307

2.3ns 0,9826 - 0,9895 - 0,9999

2.4s 0,4112 0,3805 0,9613 2,06e-29 0,7111

2.4ns 0,0658 0,5544 0,0888 1,86e-43 0,8978

* s for symmetric membership functions (ns non-symmetric)
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y-axis values of coefficient from 0 to 1. Graphs on
the left side show symmetric cases of fuzzy vari-
able (on the right side non-symmetric). P-values
of Wilcoxon signed-rank test are shown in Table 3.
Taking into account the 0,05 significance level the
null hypothesis should be rejected for shape 1 and
2 for task 1.3ns2, 1.4s, 1.4ns, and for shape 1 and 3
for 1.3s(a), 1.3ns, 1.4s, 1.4ns, 2.4s(b), 2.4ns(b). In
short we can say that for tasks using asymmetric
fuzzy numbers change the membership functions
shapes from linear to 2 and 3 shape has a signifi-

2s is for symmetric membership functions, ns non-symmetric

INFLUENCE OF MEMBERSHIP FUNCTION’S SHAPE ON. . .

cant influence on result of optimization. The statis-
tics show that regardless of task number the low-
est differences are between result for shapes 1 and
4 (Table 2). The biggest median of differences in
this case is only 0,0546. Furthermore, irrespective
of the task, variant and selected samples there is no
reason to reject the null hypothesis of the Wilcoxon
test for 4 shapes.
For shapes 1 and 2, the result differences are the
smallest for task 1.2s (median: 0,0324 (a), 0,0062
(b)) but tasks consider VaR as risk measure have
completely different output (f.e. median 1 for 1.4s,
0,9311 for 1.4ns (a)), for this task also p-value is
low, so null hypothesis should be rejected.
Comparing shapes 1 and 3 the median for different
tasks is in the range from 0 (1.4s) to 0,4381 (1.3s
(a)). Moreover in variant b the differences are al-
ways clearly smaller.
When considering the results, the differences are
clearly dependent on the adopted measure of uncer-
tainty. Models using SV and V are more resistant
to changes in shape of the membership function for
the task using the task of H. A VaR behaves unex-
pectedly and has major differences when comparing
shapes 1 and 2, and small for 1 and 3, which cannot
be seen in other tasks.

Conclusion

The aim of this article was to determine whether
the triangular membership function is sufficient to
present a variety of fuzzy returns. In general, the
shape of the membership function choice of fuzzy
returns has an impact on the result of optimization.
However, some uncertain measures are more resis-
tant to shape changes, which may also be significant
selection criterion for optimization models. Simu-
lation and analysis of optimization tasks confirmed
that the number of triangular can be a good ap-
proximation of the shape of 4, but in the case of
shape 2 and 3, the results are no longer so obvious.
Thus, in contrast to research carried out in area of
fuzzy controllers, in the case of portfolio optimiza-
tion shape change from linear to Gaussian does not
improve results, cause no impact, but significantly
increases the computational complexity. An inter-
esting finding is a strong dependence of resistance
to change shape depending on the measure of uncer-
tainty. This confirms the importance of the choice

of measure in portfolio optimization tasks. An-
other interesting continuation can be a study of the
different results of the test portfolio using real-life
data. This allows to determine a sum that will al-
low you to gain or lose by bringing the wrong shape
for different values of the portfolio. Such a study
seems more important for the investor and whether
or with what amount of investment increased com-
putational complexity is cost-effective.
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