PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dense Alumina Ceramics Obtained by Gelcasting and Cold Isostatic Pressing with the Use of 2-Carboxyethyl Acrylate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In ceramic forming techniques high particles packing can provide better properties of the final ceramic products. The high quality of the material coupled with the shape complexity of the ceramic product is still challenging. The aim of this work was the optimization and preparation of the ceramic samples based on two alumina powders of different particle size (AA05: 0.5 μm and TM-DAR: 0.15 μm). Firstly, ceramic suspensions of 50 vol.% solid loading and the volumetric ratio of AA05 to TM-DAR 1:1, 2:1, 3:1, 4:1, respectively have been prepared. The 2-carboxyethyl acrylate was applied as the new monomer limiting the negative effect of oxygen inhibition. Additionally, the cold isostatic pressing (CIP) was used in order to increase relative density of green bodies. The results of presented research have shown that samples with the ratio of AA05 to TM-DAR 2:1 were characterized by the highest green density (62%). Moreover, CIP process proved to be effective and increased the density of green bodies from 62% to 67%. The pore size distribution of the green bodies has been measured. Samples were sintered at different conditions (1400°C, 1450°C and 1500°C for 1h and 1300°C, 1400°C, 1450°C and 1500°C for 5h).
Twórcy
autor
  • Warsaw University of Technology, 3 Noakowskiego Str. 00-664 Warsaw, Poland
autor
  • National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
autor
  • National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
autor
  • Warsaw University of Technology, 3 Noakowskiego Str. 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, 3 Noakowskiego Str. 00-664 Warsaw, Poland
Bibliografia
  • [1] O. O. Omatete, M. A. Janney, S. Nunn, Gelcasting: from laboratory development towards industrial production, J. Eur. Ceram. Soc. 17, 407-13 (1997).
  • [2] I. Santacruz, M. I. Nieto, R. Moreno , Alumina b odies with near-to-theoretical density by aqueous gelcasting using concentrated agarose solutions, Ceram. Int. 31, 439-445 (2005).
  • [3] C. Tallon, G. V. Franks, Recent trends in shape forming from colloidal processing: a review, J. Ceram. Soc. Jpn. 119, 147-160 (2011).
  • [4] M. I. Nieto, I. Suarez, R. Moreno, Shaping of dense advanced ceramics and coatings by gelation of polysaccharides, Adv. Eng. Mater. 16, 637-654 (2014).
  • [5] J. Yang, J. Yu, Y. Huang, Recent developments in gelcasting of ceramics, J. Eur. Ceram. Soc. 31, 2569-2591 (2011).
  • [6] B. Psiuk, P. Wiecinska, B. Lipowska, E. Pietrzak, J. Podworny, Impulse Excitation Technique IET as a non-destructive method for determining changes during the gelcasting process, Ceram. Int. 42, 3989-3996 (2016).
  • [7] A. Idzkowska, K. Sato, Y. Sakka, M. Szafran, Deflocculation and stabilization of Ti3SiC2 ceramic powder in gelcasting process, J. Ceram. Soc. Jpn. 123, 1010-1017 (2015).
  • [8] E. Pietrzak, P. Wiecinska, M. Szafran, 2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina, Ceram. Int. 42, 13682-13688 (2016).
  • [9] D. Chandra Janaa, G. Sundararajana, K. Chattopadhyayb, Effect of monomers content in enhancing solid-state densification of silicon carbide ceramics by aqueous gelcasting and pressureless sintering, Ceram. Int. 43, 4852-4857 (2017).
  • [10] P. Falkowski, A. Grzelak, Effect of solvents on curing process of photopolymerizable ceramic suspensions, Arch. Metall. Mater. 58, 1411-4 (2013).
  • [11] A. Szudarska, T. Mizerski, M. Szafran, Galactose monoacrylate as a new monomer in gelcasting process, Arch. Metall. Mater. 56, 1211 (2011).
  • [12] J. Xu, Y. Zhang, K. Gan, X. Zhang, Y. Qu, N. Ma, J. Yang, A novel gelcasting of alumina suspension using curdlan gelation, Ceram. Int. 41, 10520-10525 (2015).
  • [13] M. Potoczek, A. Zima, Z. Paszkiewicz, A. Slosarczyk, Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose, Ceram. Int. 35, 2249-2254 (2009).
  • [14] J. Ha, Effect of atmosphere type on gelcasting behavior of Al2O3 and evaluation of green strength, Ceram. Int. 26, 251-254 (2000).
  • [15] X. Deng, S. Ran, L. Han, H. Zhang, S. Ge, S. Zhang, Foam-gelcasting preparation of high-strength self-reinforced porous mullite ceramics, J. Eur. Ceram. Soc. 37, 4059-4066 (2017).
  • [16] C. Brandes, A. C. M. Tague, S. Kroll, L. Treccani , K. Rezwan, G el casting of large area micro- and sub-micropatterned thin ceramic tapes, Ceram. Int. 42, 5036-5044 (2016).
  • [17] P. Wiecinska, T. Graule, M. Szafran, L-Ascorbic acid as a new activator in fabrication of ceramics by techniques using in situ polymerization, J. Eur. Ceram. Soc. 34, 1581-1589 (2014).
  • [18] P. Wiecinska, T. Graule, M. Bachonko, Organic additives in gel-tape casting of ceramic powders – A novel approach to the problem of elasticity and cracking of thin tapes, J. Eur. Ceram. Soc. 35, 3949-3957 (2015).
  • [19] A. Szudarska, Y. Sakka, T.S. Suzuki, T. Mizerski, M. Szafran, Magnetic field alignment in highly concentrated suspensions for gelcasting process, Ceram. Int. 42, 294-301 (2016).
  • [20] M. Mishra, Y. Sakka, A. Szudarska, M. Szafran, T. S. Suzuki, T. Uchikoshi, Textured Ti3SiC2 by gelcasting in a strong magnetic field, J. Ceram. Soc. Jpn. 120, 544-547 (2012).
  • [21] C. D. Turner, M. F. Ashby, Microstruc tural investigation and performance evaluation of slip-cast alumina supports, Ceram. Int. 43, 3824-3830 (2017).
  • [22] I. Yu. Prokhorov, G. Ya. Akimov, Cold isostatic pressing as a method of pre-forming green ceramic ware, J. Eur. Ceram. Soc. 17, 129-131 (1997).
  • [23] W. He, Q. Wei, K. Liu, Y. S. Opens, J. Liu, Numerical simulation of cold isostatic pressed alumina parts produced by selective laser sintering and part shape optimization, Ceram. Int. 39, 9683-9690 (2013).
  • [24] Y. Fu, Z. Ta o, X. Hou, We ibull distribution of the fracture strength of 99% alumina ceramic reshaped by cold isostatic pressing, Ceram. Int. 40, 7661-7667 (2014).
  • [25] Z. Wang, Y. Shi, W. He, K. Liu, Y . Zhang, Compound process of selective laser processed alumina parts densified by cold isostatic pressing and solid state sintering: Experiments, full process simulation and parameter optimization, Ceram. Int. 41, 3245-3253 (2015).
  • [26] M. Szafran, P. Wiśniewski, Effect of the bonding ceramics material on the size of pores in porous ceramic materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 179, 201-208 (2001).
  • [27] R. Lach, K. Haberko, M.M. Bućko, G. Grabowski, Alumina/ YAG 20 vol% composites prepared by the dawsonite thermal decomposition, Ceram. Int. 41, 10488-10493 (2015).
  • [28] R. Lach, K. Haberko, M. M. Bućko, M. Szumera, G. Grabowski, Ceramic matrix composites in the alumina/5-30 vol.% YAG system, J. Eur. Ceram. Soc. 31, 1889-1895 (2011).
  • [29] Y. Sakka, T. Suzuki, T. Uchikoshi, Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering, J. Eur. Ceram. Soc. 28, 935-42 (2008).
  • [30] T. Uchikoshi, T. Suzuki, H. Okuyama, Y. Sakka, P. Nicholson, Electrophoretic deposition of alumina suspension in a strong magnetic field, J. Eur. Ceram. Soc. 24, 225-9 (2004).
  • [31] T. Suzuki, T. Uchikoshi, H. Okuyama, Y. Sakka, K. Hiraga, Mechanical properties of textured, multilayered alumina produced using electrophoretic deposition in a strong magnetic field, J. Eur. Ceram. Soc. 26, 661-5 (2006).
  • [32] P. Bednarek, M. Szafran, Y. Sakka, T. Mizerski, Gelcasting of alumina with a new monomer synthesized from glucose, J. Eur. Ceram. Soc. 30, 1795-1801 (2010).
  • [33] A. Szudarska, T. Mizerski, Y. Sakka, M. Szafran, Application of new low toxic monomers in gelcasting process of alumina powder, Mater. Sci. Eng. 18, 072009 (2011).
  • [34] K. Prabhakaran , C. Pavithran, Gelcasting of alumina using urea-formaldehyde II. Gelation and ceramic forming, Ceram. Int. 26, 67-71 (2000).
  • [35] P. Auerkari, Mechanical and physical properties of engineering alumina ceramics, VTT Manufacturing Technology, (1996).
  • [36] D. Casellas, M. M. Nagl, L. Llanes, M. Anglada, Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects, J. Mater. Process. Tech. 143-144, 148-152 (2003).
  • [37] Z. Pedzich, R. Jasionowski, M. Ziabka, Cavitation wear of structural oxide ceramics and selected composite materials, J. Eur. Ceram. Soc. 34, 3351-3356 (2014).
Uwagi
EN
1. This work was supported by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science. E. Pietrzak is grateful for the support from National Institute for Materials Science by the NIMS Internship Program. We would like to thank Interpolymer company for free sample of SYNTRAN 8250.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b04b1339-0a6b-46c4-b6fd-6f696054bc14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.