Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Evapotranspiration (ET) is one of the key components of the hydrological cycle, and its accurate estimation is very important in agricultural usages. In this study, actual daily ET (ETa) from the Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration with Internalized Calibration/Earth Engine Evapotranspiration Flux (EEFLux) algorithms were used to compare the relative performance of the algorithms for the Landsat 8 images during the maize growth period. The results indicated that ETa was low at the beginning of the growing season and then came up to the middle of the growing season and then decreased due to decreasing temperature as well as changes in maize cover. The EEFLux algorithm has estimated about 7.71% of daily ET more than the SEBAL algorithm at the Arak maize farm. The results of performance evaluation showed that root mean squared error (RMSE), Nash–Sutclife coefficient of efficiency (NSE), percent bias error (PBIAS), and coefficient of determination (R2 ) criteria were obtained 0.711, 0.807, 7.398, and 0.885, respectively, based on the EEFLux algorithm and for SEBAL algorithm were equal to 1.046, 0.582, 15.080, and 0.793, respectively. According to the Taylor diagrams and observed data (lysimeter data), the EEFLux algorithm was closer to measured ETa values and had a higher correlation and a less standard deviation than the SEBAL algorithm. Therefore, the EEFLux algorithm had better estimation than the SEBAL algorithm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
319--332
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
- Department of Water Engineering, Arak Branch, Islamic Azad University, Arak, Iran
autor
- Department of Water Engineering, Arak Branch, Islamic Azad University, Arak, Iran
autor
- Department of Water Engineering, Arak Branch, Islamic Azad University, Arak, Iran
Bibliografia
- 1. Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) Model. J Irrig Drain Eng 133:380–394
- 2. Allen R, Irmak A, Trezza R, Hendrickx JM, Bastiaanssen W, Kjaersgaard J (2011) Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol Process 25(26):4011–4027
- 3. Allen RG, Waters R, Tasumi M, Trezza R, Bastiaanssen W (2002) SEBAL, surface energy balance algorithms for land, Idaho implementation. Advanced training and user's manual, version 1.0
- 4. Allen RG, Morton C, Kamble B, Kilic A, Huntington J, Thau D et al. (2015) EEFlux: A landsat-based evapotranspiration mapping tool on the google earth engine. In: 2015 ASABE/IA Irrigation symposium: emerging technologies for sustainable irrigation-A tribute to the career of terry howell, Sr. Conference proceedings , American Society of Agricultural and Biological Engineers (pp. 1–11). doi:https://doi.org/10.13031/irrig.20152143511
- 5. Babaee M, Shokat-Naghadeh A, Ahmadpari H, Nabi-Jalali M (2019) Comparison of different methods with lysimeter measurements in estimation of rice evapotranspiration in Sari Region. Rev Ing Univ 26(2):175–184
- 6. Bastiaanssen WG (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin. Turkey J Hydrol 229(1–2):87–100. https://doi.org/10.1016/S0022-1694(99)00202-4
- 7. Bastiaanssen WG, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formul J Hydrol 212:198–212. https://doi.org/10.1016/S0022-1694(98)00253-4
- 8. Bastiaanssen WGM, Noordman EJM, Pelgrum H, Davids G, Thoreson BP, Allen RG (2005) SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. ASCE J Irrig Drain 131:85–93
- 9. Bastiaanssen WGM, Karimi P, Rebelo LM, Duan Z, Senay G, Muthuwatte L, Smakhtin V (2014) Earth observation-based assessment of the water production and water consumption of Nile Basin agro-ecosystems. Remote Sens 6:10306–10334
- 10. Bhattarai N, Liu T (2019) LandMOD ET mapper: A new Matlab-based graphical user interface (GUI) for automated implementation of SEBAL and METRIC models in thermal imagery. Environ Model Softw 118:76–82. https://doi.org/10.1016/j.envsoft.2019.04.007
- 11. Bhattarai N, Shaw SB, Quackenbush LJ, Im J, Niraula R (2016) Evaluating five remote sensing-based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. Int J Appl Earth Obs Geoinf 49:75–86. https://doi.org/10.1016/j.jag.2016.01.010
- 12. Bhattarai N, Quackenbush LJ, Im J, Shaw SB (2017) A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sens Environ 196:178–192. https://doi.org/10.1016/j.rse.2017.05.009
- 13. Cawse-Nicholson K, Braverman A, Kang EL, Li M, Johnson M, Halverson G, Hook S (2020) Sensitivity and uncertainty quantification for the ECOSTRESS evapotranspiration algorithm–DisALEXI. Int J Appl Earth Obs Geoinf 89:102088. https://doi.org/10.1016/j.jag.2020.102088
- 14. Choubin B, Darabi H, Rahmati O, Sajedi-Hosseini F, Kløve B (2018) River suspended sediment modeling using the CART model: a comparative study of machine learning techniques. Sci Total Environ 615:272–281. https://doi.org/10.1016/j.scitotenv.2017.09.293
- 15. Costa JDO, Coelho RD, Wolff W, José JV, Folegatti MV, Ferraz SFDB (2019) Spatial variability of coffee plant water consumption based on the SEBAL algorithm. Sci Agric 76(2):93–101. https://doi.org/10.1590/1678-992x-2017-0158
- 16. Djaman K, Irmak S (2013) Actual crop evapotranspiration and alfalfa-and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J Irrig Drain Eng 139(6):433–446. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000559
- 17. Farajzadeh S, Khaleghi MR (2020) Evaluation of the efficiency of the rainfall simulator to achieve a regional model of erosion (case study: Toroq watershed in the east north of Iran). Acta Geophys 68(5):1477–1488. https://doi.org/10.1007/s11600-020-00487-0
- 18. Foolad F, Blankenau P, Kilic A, Allen RG, Huntington JL, Erickson TA, et al. (2018) Comparison of the automatically calibrated google evapotranspiration application—EEFlux and the manually calibrated METRIC application. Preprints.org; 2018. DOI: https://doi.org/10.20944/preprints201807.0040.v1.
- 19. French AN, Hunsaker DJ, Sanchez CA, Saber M, Gonzalez JR, Anderson R (2020) Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric Water Manage 239:106266. https://doi.org/10.1016/j.agwat.2020.106266
- 20. Haghighi AT, Darabi H, Shahedi K, Solaimani K, Kløve B (2020) A scenario-based approach for assessing the hydrological impacts of land use and climate change in the Marboreh Watershed. Iran Environ Model Assess 25(1):41–57. https://doi.org/10.1007/s10666-019-09665-x
- 21. Hu Y, Buttar NA, Tanny J, Snyder RL, Savage MJ, Lakhiar IA (2018) Surface renewal application for estimating evapotranspiration: a review. Adv Meteorol 1690714:1–11. https://doi.org/10.1155/2018/1690714
- 22. Jaafar HH, Ahmad FA (2020) Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: the Bekaa Valley. Lebanon Remote Sens Environ 238:111034. https://doi.org/10.1016/j.rse.2018.12.033
- 23. Lian J, Huang M (2016) Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region. Agric Water Manage 165:153–162. https://doi.org/10.1016/j.agwat.2015.12.001
- 24. Mhawej M, Caiserman A, Nasrallah A, Dawi A, Bachour R, Faour G (2020) Automated evapotranspiration retrieval model with missing soil-related datasets: the proposal of SEBALI. Agric Water Manag 229:105938. https://doi.org/10.1016/j.agwat.2019.105938
- 25. Mkhwanazi MM, Chavez JL, Andales AA (2015) SEBAL-A: a remote sensing ET Algorithm that accounts for advection with limited data part I: development and validation. Remote Sens 7:15046–15067. https://doi.org/10.3390/rs71115046
- 26. Mkhwanazi MM, Chavez JL (2013) Mapping evapotranspiration with the remote sensing ET algorithms METRIC and SEBAL under advective and non-advective conditions: accuracy determination with weighing Lysimeters. Civil and Environmental Engineering Department Colorado State University-Fort Collins, Pp: 67–72
- 27. Moriasi DN, Arnold JG, Liew MWV, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T ASABE 50:885–900
- 28. Ndou NN, Palamuleni LG, Ramoelo A (2018) Modelling depth to groundwater level using SEBAL-based dry season potential evapotranspiration in the upper Molopo River Catchment, South Africa. Egypt J Remote Sens Space Sci 21(3):237–248. https://doi.org/10.1016/j.ejrs.2017.08.003
- 29. Nisa Z, Khan MS, Govind A, Marchetti M, Lasserre B, Magliulo E, Manco A (2021) Evaluation of SEBS, METRIC-EEFlux, and QWaterModel actual evapotranspiration for a mediterranean cropping system in Southern Italy. Agronomy 11:345. https://doi.org/10.3390/agronomy11020345
- 30. Nyolei D, Nsaali M, Minaya V, van Griensven A, Mbilinyi B, Diels J, Kahimba F (2019) High resolution mapping of agricultural water productivity using SEBAL in a cultivated African catchment. Tanzania Phys Chem Earth Part a/b/c 112:36–49. https://doi.org/10.1016/j.pce.2019.03.009
- 31. Oliveira Costa J, José JV, Wolff W, de Oliveira NPR, Oliveira RC, Ribeiro NL, Schlichting AF (2020) Spatial variability quantification of maize water consumption based on google EEflux tool. Agric Water Manage 232:106037. https://doi.org/10.1016/j.agwat.2020.106037
- 32. Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20. https://doi.org/10.1016/j.agwat.2014.07.031
- 33. Pôças I, Paoç TA, Cunha M, Andrade JA, Silvestre J, Sousa A, Santos FL, Pereira LS, Allen RG (2014) Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithm. Biosyst Eng 128:69–81. https://doi.org/10.1016/j.biosystemseng.2014.06.019
- 34. Rahimzadegan M, Janani A (2019) Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using landsat 8 satellite imagery. Agric Water Manage 217:383–390. https://doi.org/10.1016/j.agwat.2019.03.018
- 35. Ramírez-Cuesta JM, Allen RG, Intrigliolo DS, Kilic A, Robison CW, Trezza R, Lorite IJ (2020) METRIC-GIS: an advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environ Model Software. https://doi.org/10.1016/j.envsoft.2020.104770
- 36. Singh RK, Senay GB (2016) Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States. Water 8(9):19. https://doi.org/10.3390/w8010009
- 37. Tasumi M (2019) Estimating evapotranspiration using METRIC model and landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agric Water Manage 226:105805. https://doi.org/10.1016/j.agwat.2019.105805
- 38. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192. https://doi.org/10.1029/2000JD900719
- 39. Varvani J, Khaleghi MR (2018) Investigation of application of storm runoff harvesting system using geographic information systems (GIS): a case study of the Arak Watershed, Markazi (Iran). Appl Water Sci 8:180. https://doi.org/10.1007/s13201-018-0830-7
- 40. Varvani J, Khaleghi MR (2019) A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers. Acta Geophys 67(1):205–214. https://doi.org/10.1007/s11600-018-0228-9
- 41. Wang Y, Cai H, Yu L, Peng X, Xu J, Wang X (2020) Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime. Agric Water Manage 236:106164. https://doi.org/10.1016/j.agwat.2020.106164
- 42. Xue J, Bali KM, Light S, Hessels T, Kisekka I (2020) Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agric Water Manage 238:106228. https://doi.org/10.1016/j.agwat.2020.106228
- 43. Yang W, Shabanov NV, Huang D, Wang W, Dickinson RE, Nemani RR, Knvazikin Y, Myneni RB (2006) Analysis of leaf area index products from combination of MODIS terra and aqua data. Remote Sens Environ 104:297–312
- 44. Yang Y, Su H, Zhang R, Tian J, Li L (2015) An enhanced two-source evapotranspiration model for land (ETEML): algorithm and evaluation. Remote Sens Environ 168:54–65. https://doi.org/10.1016/j.rse.2015.06.020
- 45. Yassen AN, Nam WH, Hong EM (2020) Impact of climate change on reference evapotranspiration in Egypt. CATENA 194:104711. https://doi.org/10.1016/j.catena.2020.104711
- 46. Yuan X, Wood EF, Roundy JK, Pan M (2013) CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J Climate 26(13):4828–4847. https://doi.org/10.1175/JCLI-D-12-00683.1
- 47. Zamani Losgedaragh S, Rahimzadegan M (2018) Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (case study: Amirkabir dam, Iran). J Hydrol 561:523–531. https://doi.org/10.1016/j.jhydrol.2018.04.025
- 48. Zare-Abayneh H, Noori H, Liaghat A, Noori H, Karimi V (2011) Comparison of penman-—monteith FAO method and a class pan evaporation with Lysimeter measurements in estimation of rice evapotranspiration in Amol Region. Phys Geogr Res Q 43(76):71–83
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b04aa6ce-8d2f-422d-b7de-5f3904db333f