Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work aimed to study the natural dye extracted from Indonesian wild plants (Rivina humilis L.) using different solvents. The natural dye was extracted using the maceration method. Three different solvents, namely, aquades, acetone, and ethanol 96%, were used to extract natural dye from Rivina humilis L fruit. The absorbance spectra of the extracted dye were recorded using Ultraviolet-Visible (UV-Vis) spectroscopy. The different spectra of betalain pigment revealed the dye extract’s dependence on the solvent. The functional groups of the extracted dye were analyzed using Fourier transform infrared (FTIR) spectroscopy. The adherence of carbonyl and hydroxyl groups from FTIR spectra indicated that this dye could anchor to a semiconducting material, e.g., TiO2, which was commonly used in dye-sensitized solar cells (DSSC). The electrochemical properties of the extracted pigments were studied through higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy levels. Based on the results, the best performance to construct DSSC was achieved by natural dye adsorption with aquades solvent.
Czasopismo
Rocznik
Tom
Strony
312--321
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Department of Physics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H Nasution No. 105, Cibiru 40614, Indonesia
autor
- Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran 31261, Saudi Arabia
autor
- Department of Physics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H Nasution No. 105, Cibiru 40614, Indonesia
autor
- Study Program of Physics, Faculty of Mathematics and Science, Universitas Halim Sanusi, Bandung, Jl. Garut No.2, Bandung, Jawa Barat 40271, Indonesia
autor
- Study Program of Physics, Faculty of Science and Mathematics, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229 Bandung 40154, Indonesia
autor
- Department of Physics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H Nasution No. 105, Cibiru 40614, Indonesia
autor
- Department of Physics, Faculty of Science and Technology, UIN Sunan Gunung Djati Bandung, Jl. A.H Nasution No. 105, Cibiru 40614, Indonesia
Bibliografia
- 1. Abdel-latif, M.S., Abuiriban, M.B., & El-agez, T.M. 2015. Dye-Sensitized Solar Cells Using Dyes Extracted From Flowers, Leaves, Parks, and Roots of Three Trees. January, 3–8.
- 2. Adedokun, O., Adedeji, O.L., Bello, I.T., Awodele, M.K., Awodugba, A.O. 2021. Fruit peels pigment extracts as a photosensitizer in ZnO-based Dye-Sensitized Solar Cells. Chemical Physics Impact, 3, 100039.
- 3. Adedokun, O., Sanusi, Y.K., Awodugba, A.O. 2018. Solvent dependent natural dye extraction and its sensitization effect for dye sensitized solar cells. Optik, 174, 497–507.
- 4. Al-Alwani, M.A.M., Ludin, N.A., Mohamad, A.B., Kadhum, A.A.H., Sopian, K. 2017. Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 179, 23–31. https://doi.org/10.1016/j.saa.2017.02.026.
- 5. Aliah, H., Bernando, B., Puspitasari, F., Setiawan, A., Pitriana, P., Nuryadin, B.W., Ramdhani, M.A. 2018. Dye Sensitized Solar Cells (DSSC) Performance Reviewed from the Composition of Titanium Dioxide (TiO2)/ Zinc Oxide (ZnO). IOP Conference Series: Materials Science and Engineering Paper, 288, 012070.
- 6. Alkali, B., Yerima, B.J., Ahmed, A.D., Ezike, S.C. 2022. Suppressed Charge Recombination Aided Co-Sensitization in Dye-Sensitized Solar Cells-Based Natural plant Extracts. Optik, 170072.
- 7. Ananth, S., Vivek, P., Arumanayagam, T., Murugakoothan, P. 2014. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 420–426. https://doi.org/10.1016/j.saa.2014.02.169
- 8. Biswas, M., Dey, S., Sen, R. 2013. Betalains from Amaranthus tricolor L. Journal of Pharmacology and Phytochemistry, 1, 87–95.
- 9. Dhonde, M., Sahu, K., Das, M., Yadav, A., Ghosh, P., Murty, V.V.S. 2022. Review—Recent Advancements in Dye-Sensitized Solar Cells; From Photoelectrode to Counter Electrode. Journal of The Electrochemical Society, 169(6), 066507. https://doi.org/10.1149/1945-7111/ac741f
- 10. Diantoro, M., Maftuha, D., Suprayogi, T., Iqbal, M. R., Solehudin, Mufti, N., Taufiq, A., Hidayat, A., Suryana, R., Hidayat, R. 2019. Performance of Pterocarpus Indicus Willd Leaf Extract as Natural Dye TiO2-Dye/ITO DSSC. Materials Today: Proceedings, 17, 1268–1276.
- 11. Dias, S., Castanheira, E.M.S., Gil Fortes, A., Pereira, D.M., Sameiro, M. 2020. Natural pigments of anthocyanin and betalain for coloring soy-based yogurt alternative. Foods, 9(6), 1–13. https://doi.org/10.3390/foods9060771
- 12. Dumbravă, A., Enache, I., Oprea, C.I., Georgescu, A., Gîrţu, M.A. 2012. Toward a more efficient utilisation of betalains as pigments for dye-sensitized solar celss. Digest Journal of Nanomaterials & Biostructures (DJNB), 7(1).
- 13. Elmorsy, M.R., Badawy, S.A., Abdel-Latif, E., Assiri, M.A., Ali, T.E. 2023. Significant improvement of dye-sensitized solar cell performance using low-band-gap chromophores based on triphenylamine and carbazole as strong donors. Dyes and Pigments, 214, 111206. https://doi.org/10.1016/j.dyepig.2023.111206
- 14. Erande, K.B., Hawaldar, P.Y., Suryawanshi, S.R., Babar, B.M., Mohite, A.A., Shelke, H.D., Nipane, S.V., Pawar, U.T. 2020. Extraction of natural dye (specifically anthocyanin) from pomegranate fruit source and their subsequent use in dssc. Materials Today: Proceedings, 43(40), 2716–2720. https://doi.org/10.1016/j.matpr.2020.06.357
- 15. Gandía-Herrero, F., Escribano, J., García-Carmona, F. 2016. Biological activities of plant pigments betalains. Critical Reviews in Food Science and Nutrition, 56(6), 937–945.
- 16. Guerrero-Rubio, M.A., Escribano, J., García-Carmona, F., Gandía-Herrero, F. 2020. Light Emission in Betalains: From Fluorescent Flowers to Biotechnological Applications. Trends in Plant Science, 25(2), 159–175. https://doi.org/10.1016/j.tplants.2019.11.001
- 17. Güzel, E., Arslan, B.S., Durmaz, V., Cesur, M., Tutar, Ö.F., Sarı, T., İşleyen, M., Nebioğlu, M., Şişman, İ. 2018. Photovoltaic performance and photostability of anthocyanins, isoquinoline alkaloids and betalains as natural sensitizers for DSSCs. Solar Energy, 173, 34–41.
- 18. Haque, F.Z., Nandanwar, R., Singh, P. 2017. Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik, 128, 191–200.
- 19. Hemmatzadeh, R., Jamali, A. 2015. Enhancing the optical absorption of anthocyanins for dye-sensitized solar cells. Journal of Renewable and Sustainable Energy, 7(1).
- 20. Huang, Y., Chen, W.-C., Zhang, X.-X., Ghadari, R., Fang, X.-Q., Yu, T., Kong, F.-T. 2018. Ruthenium complexes as sensitizers with phenyl-based bipyridine anchoring ligands for efficient dye-sensitized solar cells. Journal of Materials Chemistry C, 6(35), 9445–9452. https://doi.org/10.1039/C8TC03288B.
- 21. Isah, K.U., Ahmadu, U., Idris, A., Kimpa, M.I., Uno, U.E., Ndamitso, M.M., Alu, N. 2015. Betalain pigments as natural photosensitizers for dye-sensitized solar cells: The effect of dye pH on the photoelectric parameters. In Materials for Renewable and Sustainable Energy, 4(1), 5–9. https://doi.org/10.1007/s40243-014-0039-0
- 22. Khan, A.A., Adilah, M.Y.S., Mamat, M.H., Yahaya, S.Z., Setumin, S., Ibrahim, M.N., Daud, K., Abdullah, M.H. 2022. Magnesium sulfate as a potential dye additive for chlorophyll-based organic sensitiser of the dye-sensitised solar cell (DSSC). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 274, 121140.
- 23. Khan, M.I., Denny Joseph, K.M., Muralidhara, M., Ramesh, H.P., Giridhar, P., Ravishankar, G. A. 2011. Acute, subacute and subchronic safety assessment of betalains rich Rivina humilis L. berry juice in rats. Food and Chemical Toxicology, 49(12), 3154–3157. https://doi.org/10.1016/j.fct.2011.08.022
- 24. Khan, M.I., Giridhar, P. 2015. Plant betalains: Chemistry and biochemistry. Phytochemistry, 117, 267–295. https://doi.org/10.1016/j.phytochem.2015.06.008
- 25. Kumara, N.T.R.N., Ekanayake, P., Lim, A., Iskandar, M., Ming, L.C. 2013. Study of the enhancement of cell performance of dye sensitized solar cells sensitized with nephelium lappaceum (F: Sapindaceae). Journal of Solar Energy Engineering, Transactions of the ASME, 135(3), 1–6. https://doi.org/10.1115/1.4023877
- 26. Madnasri, S., Ati, L. 2021. Organic Solar Cell Performance of Musa acuminata bracts Extract by Microwave Irradiation Treatment. International Journal of Energy Research, 45(3), 4214–4223. https://doi.org/10.1002/er.6085
- 27. Makuła, P., Pacia, M., Macyk, W. 2018. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. In The journal of physical chemistry letters, 9(23), 6814–6817. ACS Publications.
- 28. Mejica, G.F.C., Unpaprom, Y., Balakrishnan, D., Dussadee, N., Buochareon, S., Ramaraj, R. 2022. Anthocyanin pigment-based dye-sensitized solar cells with improved pH-dependent photovoltaic properties. Sustainable Energy Technologies and Assessments, 51, 101971.
- 29. Nurida A., Chintia A., Sakkyananda S., Aprilia A., Susilawati T., Mulyana C., Lusi Safriani L. 2017. Fabrikasi Sel Surya Tersensitasi Dye Dengan ZnO Nanorod Sebagai Fotoanoda dan Material Spiro Sebagai Hole Transport Material (HTM). Jurnal Ilmu Dan Inovasi Fisika, 1, 79–85.
- 30. Najihah, M.Z., Noor, I.M., Winie, T. 2022. Longrun performance of dye-sensitized solar cell using natural dye extracted from Costus woodsonii leaves. Optical Materials, 123, 111915.
- 31. Najm, A.S., Alwash, S.A., Sulaiman, N.H., Chowdhury, M.S., Techato, K. 2023. N719 dye as a sensitizer for dye‐sensitized solar cells (DSSCs): A review of its functions and certain rudimentary principles. Environmental Progress & Sustainable Energy, 42(1), e13955.
- 32. Nan, H., Shen, H.-P., Wang, G., Xie, S.-D., Yang, G.-J., Lin, H. 2017. Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell. Optical Materials, 73, 172–178.
- 33. O’regan, B., Grätzel, M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740.
- 34. Obi, K., Frolova, L., Fuierer, P. 2020. Preparation and performance of prickly pear (Opuntia phaeacantha) and mulberry (Morus rubra) dye-sensitized solar cells. Solar Energy, 208, 312–320.
- 35. Oladeji, O.S., Ikhile, M.I., Mamo, M., Ndinteh, D.T., Ndungu, P.G. 2022. Extraction, characterization and energy investigation of Garcinia kola, Cola Nitida and Cola Accuminata for efficient light absorption in dyesensitized solar cells. Solar Energy, 244, 386–400.
- 36. Orona-Navar, A., Aguilar-Hernández, I., Nigam, K.D.P., Cerdán-Pasarán, A., Ornelas-Soto, N. 2021. Alternative sources of natural pigments for dye-sensitized solar cells: Algae, cyanobacteria, bacteria, archaea and fungi. Journal of Biotechnology, 332, 29–53.
- 37. Patni, N., Pillai, S.G., Sharma, P. 2020. Effect of using betalain, anthocyanin and chlorophyll dyes together as a sensitizer on enhancing the efficiency of dye-sensitized solar cell. International Journal of Energy Research, 44(13), 10846–10859.
- 38. Polturak, G., Aharoni, A. 2018. La Vie en Rose: Biosynthesis, Sources, and Applications of Betalain Pigments. Molecular Plant, 11(1), 7–22.
- 39. Prakash, P., Janarthanan, B. 2023. Enhancement of sensitization and electron transfer by kumkum dye in dye-sensitized solar cell applications. Optik, 287, 171093. https://doi.org/https://doi.org/10.1016/j.ijleo.2023.171093
- 40. Purushothamreddy, N., Dileep, R.K., Veerappan, G., Kovendhan, M., Joseph, D.P. 2020. Prickly pear fruit extract as photosensitizer for dye-sensitized solar cell. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117686.
- 41. Shah, W., Faraz, S.M., Awan, Z.H. 2023. Photovoltaic properties and impedance spectroscopy of dye sensitized solar cells co-sensitized by natural dyes. Physica B: Condensed Matter, 654, 414716.
- 42. Sharma, G., Singh, V., Dolia, S.N., Jain, I.P., Jain, P.K., Lal, C. 2023. Present status of metal-free photosensitizers for dye-sensitized solar cells. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.179
- 43. Singh, P.K., Shukla, V.K. 2022. Widening spectral range of absorption using natural dyes: Applications in dye sensitized solar cell. Materials Today: Proceedings, 49, 3235–3238.
- 44. Sinha, D., De, D., Ayaz, A. 2018. Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 193, 467–474. https://doi.org/10.1016/j.saa.2017.12.058
- 45. Srivastava, A., Singh Chauhan, B., Chand Yadav, S., Kumar Tiwari, M., Akash Kumar Satrughna, J., Kanwade, A., Bala, K., Shirage, P.M. 2022. Performance of dye-sensitized solar cells by utilizing Codiaeum Variegatum Leaf and Delonix Regia Flower as natural sensitizers. Chemical Physics Letters, 807, 140087. /https://doi.org/10.1016/j.cplett.2022.140087.
- 46. Strack, D., Vogt, T., Schliemann, W. 2003. Recent advances in betalain research. Phytochemistry, 62(3), 247–269.
- 47. Sung, H.K., Lee, Y., Kim, W.H., Lee, S.-J., Sung, S.-J., Kim, D.-H., Han, Y.S. 2020. Enhanced power conversion efficiency of dye-sensitized solar cells by band edge shift of TiO2 photoanode. Molecules, 25(7). https://doi.org/10.3390/molecules25071502
- 48. Yadav, S.C., Tiwari, M.K., Kanwade, A., Lee, H., Ogura, A., Shirage, P.M. 2023. Butea monosperma, crown of thorns, red lantana camara and royal poinciana flowers extract as natural dyes for dye sensitized solar cells with improved efficiency. Electrochimica Acta, 441, 141793.
- 49. Younas, M., Gondal, M.A. 2022. Economical and efficient dye sensitized solar cells using single wall carbon nanotube-titanium dioxide nanocomposites as photoanode and SWCNT as Pt-free counter electrode. Solar Energy, 245, 37–45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b048cec8-5259-4270-a887-1319b3b60c35