Identyfikatory
Warianty tytułu
Comparison groundwater flow modeling using the analytic element method AEM and finite difference method FDM - a case study
Języki publikacji
Abstrakty
Solutions to many issues related to groundwater flow require mathematical modeling. Commonly used models for solving groundwater flow equations - finite difference method (FDM) or finite element method (FEM) are at present proven tools of hydrogeologists. The most popular MODFLOW - based FDM algorithm has been tested in thousands of cases and is now the standard in groundwater flow modeling. Apart from the known advantages of numerical modeling based on FDM or FEM methods, their disadvantage might be the need of extensive discretization of the modeled area and finding a compromise between the accuracy and complexity of the numerical model. In general implementation of advanced numerical models of groundwater flow and doing extensive spatial discretization requires a commitment of considerable time and resources. The article presents a comparison of piezometric head FDM modeling results using the MODFLOW model with the results of AEM model using analytical method. The AEM model does not require discretization of the modeled area at all, which simplifies the data entry and allows for relatively quick modeling of the problem case. The absence of the discretization effort allows for quick change of model parameters, which in consequence allows to explore many variants of the simulation in less time than by using the FDM model. To compare the two modeling methods, the author utilized spatial discretisation that was originally developed within the FDM model applied for optimization of dewatering with the drainage wells of the construction excavations at the wastewater treatment plant in Myszków.
Czasopismo
Rocznik
Tom
Strony
1229--1233
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
Bibliografia
- 1. BAKKER M. 2004 - TimML: a multiaquifer analytic element model version 2.1. Univ. of Georgia, Athens, Ga., www.engr.uga.edu/~mbakker/ TimML.
- 2. CHIANG W.H. 2005 - 3D-Groundwater Modeling with PMWIN. Berlin/ Heidelberg: Springer-Verlag. http://link.springer.com/10.1007/3-540- 27592-4.
- 3. CRAIG J. 2002 - Bluebird developers manual. Rap. tech., Department of Civil, Structural, and Environmental Engineering, University at Buffalo, Buffalo, NY.
- 4. CRAIG J., MATTOT S. 2009 - Visual AEM (Wersja 1.04). http://www. civil.uwaterloo.ca/jrcraig/visualaem.
- 5. JANKOVIC I. 2001 - Win32 computer program for analytic-based modeling of single-layer groundwater flow in heterogeneous aquifers with particle tracking, capture-zone delineation, and parameter estimation.
- 6. KULMA R., ZDECHLIK R. 2009 - Modelowanie procesów filtracji. AGH Uczelniane Wyd. Naukowo-Dydaktyczne.
- 7. MATOTT L. S. 2005 - OSTRICH: An optimization software tool: Documentation and users guide. University at Buffalo, Buffalo, NY.
- 8. McDONALD M.G., HARBAUGH A.W. 1988 - A modular three-dimensional finite-difference ground-water flow model (USGS Numbered Series No. 06-A1) (s. 586). U.S. Geological Survey. http://pubs.er.usgs.gov/ publication/twri06A1.
- 9. NIKIEL G. 2010 - Wykorzystanie numerycznego modelu filtracji wód podziemnych przy projektowaniu odwodnienia wykopów budowlanych na terenie modernizowanej oczyszczalni ścieków w Myszkowie. Biul. Państw. Inst. Geol., 442: 137-142.
- 10. ROGOŻ M. 2007 - Dynamika wód podziemnych. Główny Instytut Górnictwa, Katowice.
- 11. STRACK O.D.L. 1989 - Groundwater mechanics. Wyd. Englewood Cliffs, N.J.: Prentice Hall, s. 732.
- 12. STRACK O.D.L., HAITJEMA H.M. 1981a - Modeling double aquifer flow using a comprehensive potential and distributed singularities: 1. Solution for homogeneous permeability. Water Resources Research, 17(5): 1535-1549.
- 13. STRACK O.D.L., HAITJEMA H.M. 1981b - Modeling double aquifer flow using a comprehensive potential and distributed singularities: 2. Solution for inhomogeneous permeabilities. Water Resources Research, 17(5): 1551-1560.
- 14. ZDECHLIK R. 2016 - A review of applications for numerical groundwater flow modeling. W 16th International Multidisciplinary Scientific GeoConference SGEM 2016, SGEM Vienna GREEN Extended Scientific Sessions, (T. 3, s. 11-18). STEF92 Technology. https://doi.org/10.5593/ sgem2016HB33.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0477605-9178-41c1-ada0-ff493e2db755