PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical approach to the production of cement composites doped with ZnO and ZnO-based materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, physical and functional properties of the cement composites containing ZnO, ZnO/lignin and lignin admixtures were investigated using Response Surface Methodology (RSM). The I-optimal design based on RSM was used to assess the influence of ZnO-based doping agent, of either commercial or synthetic origin, on cement composite production in the function of average compressive strength and cost. Polynomial mathematical models were developed by RSM confronting results from the experimental design. The accuracy and precision of the utilized models established by I-optimal design were tested using Analysis of Variance (ANOVA). The first stage of formulation optimization revealed that the use of commercially available ZnO-based admixture no. 4 (ZnO-SA, supplied by Sigma Aldrich) allowed to achieve the desired results, passing all the requirements, i.e., the best microbial purity combined with reasonable cost, followed by satisfactory physical properties. In the second stage of formulation optimization, the influence of implementing the hybrid materials, i.e., ZnO-SA mixed in different proportions with lignin was evaluated. RSM revealed that doping admixture no. 3, i.e., ZnO-SA/lignin (5:1), is the best candidate, which comprised augmented functional and physical properties of the fabricated cement composite. This component exhibited the best microbial purity as well as the lowest total pore volume, followed by satisfactory physical properties. Verification of the model findings indicated considerable agreement between the predicted and experimental values. From the findings, it was confirmed that a reasonable cost-performance balance for cement composites can be achieved using ZnO-SA and ZnO-SA/lignin (5:1).
Rocznik
Strony
art. no. 168352
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
  • Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, PL-50370 Wroclaw, Poland
  • Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, PL-50370 Wroclaw, Poland
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, PL-60965 Poznan, Poland
  • Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
Bibliografia
  • AUGUSTYNIAK, A., JABLONSKA, J., CENDROWSKI, K., GŁOWACKA, A., STEPHAN, D., MIJOWSKA, E., SIKORA, P., 2022. Investigating the release of ZnO nanoparticles from cement mortars on microbiological models. Appl. Nanosci. 12, 489–502.
  • BALICKI, S., PAWLACZYK-GRAJA, I., GANCARZ, R., CAPEK, P., WILK, K.A., 2020. Optimization of ultra-sound-assisted extraction of functional food fiber from Canadian Horseweed (Erigeron canadensis L.). ACS Omega 5(33), 20854-20862.
  • BALICKI, S., 2021. Unit process optimization in the organic technology, Przem. Chem. 100(5), 490-497.
  • BARTMAN, M., BALICKI, S., WILK, K.A., 2021. Formulation of environmentally safe graffiti remover containing esterified plant oils and sugar surfactant. Molecules 26, 4706.
  • BARTMAN, M., BALICKI, S., HOŁYSZ, L., WILK, K.A., 2023. Graffiti coating eco-remover developed for sensitive surfaces by using an optimized high-pressure homogenization process. Colloid Surf. A-Physicochem. Eng. Asp. 659, 130792.
  • BORDOLOI, D., BARUAH, A.C., BARKAKATI, P., BORTHAKUR, P.C., 1998. Influence of ZnO on clinkerization and properties of VSK cement. Cem. Concr. Res. 28, 329-333.
  • BOX, G.E.P., WILSON, K.B., 1951. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Series. B Stat. Methodol. 13, 1-45.
  • DARWEESH, H.H.M., 2021. Extraction of lignin from wastes of sugarcane bagasse and its utilization as an admixture for Portland cement. NanoNEXT 2, 13-27.
  • DA SILVA, L.R.R., FRANCISCO, M.B., MARTINS, R.M., GONÇALVES, P.C., DOS SANTOS, V.C., GOMES, G.F., DE LOURDES NORONHA MOTTA MELO, M., 2023. RSM-based modeling and optimization of cementitious composites with polyurethane powder waste and foundry exhaust sand. J. Mater. Civil Eng. 35(3), 1.
  • DAUD, N.M., ROZAIMAH, S.A.S., HASSIMI, A.H., 2018. Response surface methodological analysis for the optimization of acid-catalyzed transesterification biodiesel wastewater pre-treatment using coagulation-flocculation process. Process Saf. Environ. Prot. 113, 184-192.
  • ELEVADO, K.J.T., GALUPINO, J.G., GALLARDO, R.S., 2019. Compressive strength optimization of concrete mixed with waste ceramics and fly ash. Int. J. GEOMATE 16(53), 135-140.
  • GALA MORENA, A., TZANOV, T., 2022. Antibacterial lignin-based nanoparticles and their use in composite materials. Nanoscale Adv. 4, 4447-4469.
  • GALA MORENA, A., BASSEGODA, A., NATAN, M., JACOBI, G., BANIN, E., TZANOV, T., 2022. Antibacterial properties and mechanisms of action of sonoenzymatically synthesized lignin-based nanoparticles. ACS Appl. Mater. Interfaces 14, 37270-37279.
  • GUPTA, C., NADELMAN, E., WASHBURN, N.R., KURTIS, K.E., 2017. Lignopolymer superplasticizers for low-CO2 cements. ACS Sustain. Chem. Eng. 5, 4041-4049.
  • HOU, D., CHEN, D., WANG, X., WU, D., MA, H., HU, X., ZHANG, Y., WANG, P., YU, R., 2020. RSM-based modelling and optimization of magnesium phosphate cement-based rapid-repair materials. Constr. Build. Mater. 263, 120190.
  • HUANG, C., MA, J., ZHANG, W., HUANG, G., YONG, Q., 2018. Preparation of lignosulfonates from biorefinery lignins by sulfomethylation and their application as a water reducer for concrete. Polymers 10, 841.
  • IJAZ, M., ZAFAR, M., ISLAM, A., AFSHEEN, S., IQBAL, T., 2020. A Review on antibacterial properties of biologically synthesized zinc oxide nanostructures. J. Inorg. Organomet. Polym. Mater. 30, 2815–2826.
  • JĘDRZEJCZAK, P., PARUS, A., BALICKI, S., KORNAUS, K., JANCZAREK, M., WILK, K.A., JESIONOWSKI, T., ŚLOSARCZYK, A., KLAPISZEWSKI, Ł., 2023. The influence of various forms of titanium dioxide on the performance of resultant cement composites with photocatalytic and antibacterial functions. Mater. Res. Bull. 160, 112139.
  • KALLIOLA, A., VEHMAS, T., LIITIӒ, T., TAMMINEN, T., 2015. Alkali-O2 oxidized lignin – A bio-based concrete plasticizer. Ind. Crops. Prod. 74, 150-157.
  • KHEZERLOU, A., ALIZADEH-SANI, M., AZIZI-LALABADI, M., EHSANI, A., 2018. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog. 123, 505-526.
  • KLAPISZEWSKA, I., PARUS, A., ŁAWNICZAK, Ł., JESIONOWSKI, T., KLAPISZEWSKI, Ł., ŚLOSARCZYK, A., 2021. Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures. Cem. Concr. Compos. 124, 104250.
  • KLAPISZEWSKA, I., KUBIAK, A., PARUS, A., JANCZAREK, M., ŚLOSARCZYK, A., 2022a. The in situ hydrothermal and microwave syntheses of zinc oxides for functional cement composites. Materials 15, 1069.
  • KLAPISZEWSKA, I., ŁAWNICZAK, Ł., PARUS, A., JESIONOWSKI, T., KLAPISZEWSKI, Ł., ŚLOSARCZYK, A., 2022b. Zinc oxide as a functional admixture to cement composites. Physicochem. Probl. Miner. Process. 58, 145565.
  • KLAPISZEWSKA I., ŁAWNICZAK, Ł., BALICKI S., GAPIŃSKI, B., WIECZOROWSKI, M., WILK, K.A., JESIONOWSKI, T., KLAPISZEWSKI, Ł., ŚLOSARCZYK, A., 2023. Influence of zinc oxide particles dispersion on the functional and antimicrobial properties of cementitious composites. J. Mater. Res. Technol. 24, 2239-2264.
  • KLAPISZEWSKI, Ł., KLAPISZEWSKA, I., ŚLOSARCZYK, A., JESIONOWSKI, T., 2019. Lignin-based hybrid admixtures and their role in cement composites fabrication. Molecules 24, 3544.
  • KOŁODZIEJCZAK-RADZIMSKA, A., JESIONOWSKI, T., 2014. Zinc oxide—from synthesis to application: A review. Materials 7, 2833-2881.
  • KUMAR, M., BANSAL, M., GARG, R., 2021. An overview of beneficiary aspects of zinc oxide nanoparticles on performance of cement composites. Mater. Today. Proc. 43, 892-898.
  • KUMAR, R., UMAR, A., KUMAR, G., NALWA, H.S., 2017. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 43, 3940-3961.
  • LÁZARO-MASS, S., de la ROSA-GARCÍA, S., GARCÍA-SOLIS, C., REYES-TRUJEQUE, J., SORIA-CASTRO, M., FUENTES, A.F., QUINTANA, P., GÓMEZ-CORNELIO, S., 2022. Controlling growth of phototrophic biofilms on limestone using CaZn2(OH)6•2H2O and ZnO nanoparticles. J. Chem. Technol. Biotechnol. 97, 3011-3023.
  • LIU, J., JIN, H., GU, C., YANG, Y., 2019. Effects of zinc oxide nanoparticles on early-age hydration and the mechanical properties of cement paste. Constr. Build. Mater. 217, 352-362.
  • MYERS, R.H., MONTGOMERY, D.C., ANDERSON-COOK, C.M., 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; Wiley Inc: New York.
  • NOCHAIYA, T., SEKINE, Y., CHOOPUN, S., CHAIPANICH, A., 2015. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. J. Alloys Compd. 630, 1-10.
  • SINKHONDE, D., ONCHIRI, R.O., OYAWA, W.O., MWERO, J.M., 2021. Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder. Heliyon 7(12), e08565.
  • SIRELKHATIM, A., MAHMUD, S., SEENI, A., KAUS, N.H.M., ANN, L.C., BAKHORI, S.K.M., HASAN, H., MOHAMAD, D., 2015. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nanomicro Lett. 7, 219-242.
  • THANGAPANDI, K., ANURADHA, R., ARCHANA, N., MUTHURAMAN, P., AWOYERA PAUL, O., GOBINATH, R., 2020. Experimental study on performance of hardened concrete using nano materials. KSCE J. Civ. Eng. 24, 596-602.
  • UCHE, O.A., KELECHI, S.E., ADAMU, M., IBRAHIM, Y.E., ALANAZI, H., OKOKPUJIE, I.P., 2022. Modelling and optimizing the durability performance of self consolidating concrete incorporating crumb rubber and calcium carbide residue using response surface methodology. Buildings 12, 398.
  • VOICU, G., TIUCA, G.-A., BADANOIU, A.-I., HOLBAN, A.-M., 2022. Nano and mesoscopic SiO2 and ZnO powders to modulate hydration, hardening and antibacterial properties of Portland cements. J. Build. Eng. 57, 104862.
  • WU, A., RUAN, Z., BÜRGER, R., YIN, S., WANG, J., WANG, Y., 2020. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner. Eng. 156, 106488.
  • WYSOKOWSKI, M., KLAPISZEWSKI, Ł., MOSZYŃSKI, D., BARTCZAK, P., SZATKOWSKI, T., MAJCHRZAK, I., SIWIŃSKA-STEFAŃSKA, K., BEZHENOV, V.V., JESIONOWSKI, T., 2014. Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions. Mar. Drugs 12, 2245-2268.
  • ZHOU, L., ZHOU, H., YANG, X., 2019. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Sep. Purif. Technol. 210, 93-99.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0458c0b-f206-4bd6-b7e5-a103182cad2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.