PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A novel method for extremum response estimation of wheel–rail rolling noise by the development of moving pseudo-excitation method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wheel–rail rolling noise (WRRN) hold strong randomicity and time-varying time–frequency characteristics subjected to a moving vehicle on the tracks, consequently, its prediction highly depends on accurate simulation and calibration of vehicle–track interaction and noise source. In this work, a novel method is proposed to estimate the extreme value of WRRN. First, a flexible wheelset modeled by Timoshenko beam with variable cross sections is introduced and coupled into the rigid–flexible multi-body vehicle–track interaction model previously established by the finite elemental matrix coupling method. To simulate the noise source intensity and frequency characteristics, a moving pseudo–excitation method (MPEM) is developed for obtaining time-varying power spectral density (PSD) of system responses, and to obtain the extremum of time-domain response. Furthermore, a simplified WRRN prediction model (including the wheel, rail, and trackslab noise model), integrated with the modern acoustic theory, is presented to estimate the extremum of WRRN–sound pressure level (SPL). Numerical examples show the effectiveness and suitability of this model from aspects of system response amplitude, the PSD of wheel acceleration, the wheelset eigenfrequency distribution, the WRRN–SPL spectrum, and the extremum of WRRN–SPL. The practicality of the MPEM in predicting WRRN–SPL is also validated. The influence of vehicle speed and ground surface type on WRRN is investigated, and it shows that the vehicle speed is positively correlated to WRRN–SPL and the extremum of WRRN–SPL will be decreased by the reduction of the effective flow resistivity within bounds.
Rocznik
Strony
art. no. e160, 2023
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Bibliografia
  • 1. Thompson DJ. Railway Noise and Vibration: mechanisms, mod- elling and means of control. Amsterdam: Elsevier; 2009.
  • 2. Jin XS. Key problems faced in high–speed train operation. J Zhejiang Univ Sc A. 2014;15:936–45. https://doi.org/10.1631/ jzus.A1400338.
  • 3. Thompson DJ, Hemsworth B, Vincent N, et al. Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J Sound Vibr. 1996;193:123–35. https://doi.org/10.1006/jsvi.1996.0252.
  • 4. Thompson DJ, Fodiman P, Mahé H, et al. Experimental valida- tion of the TWINS prediction program for rolling noise, part 2: results. J Sound Vibr. 1996;193:137–47. https://doi.org/10. 1006/jsvi.1996.0253.
  • 5. Remington PJ. Wheel/rail rolling noise, I: Theoretical analysis. J Acoust Soc AM. 1987;81:1805–23. https://doi.org/10.1121/1. 394746.
  • 6. Remington PJ. Wheel/rail noise–Part IV: Rolling noise. J Sound Vibr. 1976;46:419–36. https://doi.org/10.1016/0022-460X(76) 90864-6.
  • 7. Sheng XZ, Liu YX, Zhou X. The response of a high–speed train wheel to a harmonic wheel–rail force. J Phys Conf Ser. 2016;744:012145.
  • 8. Sheng XZ, Cheng G, Thompson DJ, et al. Modelling wheel/rail rolling noise for a high–speed train running along an infinitely long periodic slab track. J Acoust Soc AM. 2020;148:174–90. https://doi.org/10.1121/10.0001566.
  • 9. Zhong TS, Cheng G, Sheng XZ, et al. Vibration and sound radiation of a rotating train wheel subject to a vertical harmonic wheel–rail force. J Mod Transp. 2018;26:81–95. https://doi.org/ 10.1007/s40534-017-0154-6.
  • 10. Cheng G, He YP, Han J, et al. An investigation into the effects of modelling assumptions on sound power radiated from a high– speed train wheelset. J Sound Vibr. 2021;495:115910. https:// doi.org/10.1016/j.jsv.2020.115910.
  • 11. Ryue J, Jang S, Thompson DJ, et al. A wavenumber domain numerical analysis of rail noise including the surface impedance of the ground. J Sound Vibr. 2018;432:173–91. https://doi.org/ 10.1016/j.jsv.2018.06.032.
  • 12. Nilsson C-M, Jones CJC, Thompson DJ, et al. A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails. J Sound Vibr. 2009;321:813–36. https://doi.org/10.1016/j.jsv.2008.10.027.
  • 13. Wei W, Zhao XG. Analysis on vibration and noise of vehicle wheel. J Noise Vibr Cont. 2008;4:99–102 ([In Chinese]).
  • 14. Li H, Thompson DJ, Squicciarini G, et al. Using a 2.5D boundary element model to predict the sound distribution on train external surfaces due to rolling noise. J Sound Vibr. 2020;486:115599. https://doi.org/10.1016/j.jsv.2020.115599.
  • 15. Yang XW, Zhai WM, He ZX. Prediction of wheel–rail noise by operating high speed train. J Noise Vibr Cont. 2011;31:89–94 ([In Chinese]).
  • 16. Zhai WM. New Advance in vehicle–track coupling dynamics. J China Railway Sci. 2002;23:2–14 ([In Chinese]).
  • 17. Zhai WM. Vehicle–track coupling dynamics. 4th ed. Beijing: Science Press; 2015. ([In Chinese]).
  • 18. Han J, Jin X, et al. Time-domain model for wheel–rail noise analysis at high operation speed. J Zhejiang Univ Sc A. 2017;18:593–602. https://doi.org/10.1631/jzus.A1600692.
  • 19. Zhang XY, Thompson DJ, Sheng XZ. Differences between Euler-Bernoulli and Timoshenko beam formulations for calcu- lating the effects of moving loads on a periodically supported beam. J Sound Vibr. 2020;481:115432. https:// doi. org/ 10. 1016/j.jsv.2020.115432.
  • 20. Xu L, Zhai WM. A three–dimensional dynamic model for train– track interactions. J Appl Math Model. 2019;76:443–65. https:// doi.org/10.1016/j.apm.2019.04.037.
  • 21. Xu L. Train–track–substructure dynamic interaction: theoretical model and numerical algorithm. Beijing: China Railway Press; 2021.
  • 22. Xu L. Unified analysis model for railway train-track-substruc- ture dynamic interaction Part I: the dynamics model construc- tion and its solution. J Rail Sci Eng. 2022;30(2):162–82 ([In Chinese]).
  • 23. Timoshenko SP, Gere JM. Mechanics of materials. Beijing: Sci- ence Press; 1978. ([In Chinese]).
  • 24. Lin JH, Zhong WX. Some notes on PEM and structural random response analysis. J Chin J Comput Mech. 1998;15(2):217–23 ([In Chinese]).
  • 25. Lv F. Stochastic analysis for dynamic interaction of vehicles and structures. Dalian: Dalian University of Technology; 2008. ([In Chinese]).
  • 26. Craff RW. Dynamics of Structure. Beijing: Science Press; 1985. ([In Chinese]).
  • 27. Fahy FJ, J. Gardonio P. Sound and structural vibration-radiation, transmission and response. J Vibr Acoust. 1987. https://doi.org/ 10.1115/1.3269418.
  • 28. G.H. D, Z.M. Z. Fundamentals of acoustics, Nanjing, Nanjing University Press 2012 (In Chinese).
  • 29. Lu F, Gao Q, Lin JH, et al. Non-stationary random ground vibra- tion due to loads moving along a railway track. J Sound Vibr. 2006;298:30–42. https://doi.org/10.1016/j.jsv.2006.04.041.
  • 30. Sato Y. Study on high–frequency vibration in track operation with high–speed trains. J Quart Rep Rtri. 1977;3:18–22.
  • 31. Yang XW. Characteristics of wheel–rail rolling noise of ballastless track in high–speed railway. J Tongji Univ. 2014;42:421–8.
  • 32. Xu L, Zhai WM, Gao JM. A probabilistic model for track ran- dom irregularities in vehicle/track coupled dynamics. J Appl Math Model. 2017;51:145–58. https://doi.org/10.1016/j.apm.2017.06. 027.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b03cd451-f8d3-4c70-9cde-0a817f759060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.