Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Every year, more and more vehicles appear on the world's roads. This leads to increased traffic on the roads. Road accidents have become a rapidly growing threat. They cause loss of human life and economic assets. This is due to the rapid growth of the world's human population and the very rapid development of motorization. The main problem in forecasting and analyzing data on the number of traffic accidents is the small size of the dataset that can be used for analysis in this regard. And on the other hand, road accidents cause, globally, millions of deaths and injuries annually is their density in time and space. It is worth noting that the pandemic has reduced the number of traffic accidents. However, the value is still very high. The purpose of the article is to assess the impact of information on the number of traffic accidents on the outcome of the forecast. To this end, using historical statistical data, the forecast of the number of traffic accidents for the following years was determined, and how this variability of the input data affects the value of the average percentage error of the forecast was determined. Based on the study, it can be concluded that a smaller number of input data, historical data on the number of accidents, instead of 32 years, 7 years, makes the determination of the forecast of the number of accidents for subsequent years, is at a satisfactory level, the average absolute percentage error of MAPE less than 7%. The article concludes with the determination of the forecast for future years. It is worth noting that the prevailing pandemic distorts the results obtained.
Rocznik
Tom
Strony
219--230
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
autor
- Akademia Nauk Stosowanych im. Stanisława Staszica w Pile, ul. Podchorążych 10, 64-920 Piła
Bibliografia
- AL-MADANI H. 2018. Global road fatality trends’ estimations based on country-wise microlevel data. Accident Analysis & Prevention, 111: 297-310. https://doi.org/10.1016/j.aap.2017.11.035
- Bank Danych Lokalnych. Główny Urząd Statystyczny. Retrieved from https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica (access 21.01.2022).
- BARTUSKA L., HANZL J., LIZBETINOVA L. 2016. Possibilities of Using the Data for Planning the Cycling Infrastructure. Procedia Engineering, 161: 282-289. https://doi.org/10.1016/j.proeng.2016.08.555
- BISWAS A.A., MIA J., MAJUMDER A. 2019. Forecasting the Number of Road Accidents and Casualties using Random Forest Regression in the Context of Bangladesh. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6-8 July 2019.
- CHUDY-LASKOWSKA K., PISULA T. 2014. Forecast of the Number of Road Accidents in Poland. Logistics, 6: 2710-2721.
- ČUBRANIĆ-DOBRODOLAC M., ŠVADLENKA L., ČIČEVIĆ S., DOBRODOLAC M. 2020. Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach. International Journal of Injury Control and Safety Promotion, 27(2): 156–167. https://doi.org/10.1080/17457300.2019.1690002
- DUDEK G. 2013. Exponential smoothing models for short-term power system load forecasting. Energy Mark, 3: 14-19.
- DUTTA B., BARMAN M.P., PATOWARY A.N. 2020. Application of Arima model for forecasting road accident deaths in India. International Journal of Agricultural And Statistical Sciences, 16(2): 607-615.
- FIJOREK K., MRÓZ K., NIEDZIELA K., FIJOREK D. 2010. Forecasting electricity prices on the day-ahead market using data mining methods. Energy Mark, 2010.
- GORZELANCZYK P. 2022. Change in the Mobility of Polish Residents during the COVID-19 Pandemic. Communications – Scientific letters of the University of Zilina, 24(3): A100-111. doi: 10.26552/com.C.2022.3.A100-A111
- GORZELANCZYK P. 2023a. Forecasting the number of road accidents in Poland using weather-dependent trend models. Technical Sciences, 26: 57–76. doi: https://doi.org/10.31648/ts.8289
- GORZELANCZYK P. 2023b. Application of neural networks to forecast the number of road accidents in provinces in Poland. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2022.e12767
- GORZELANCZYK P. 2023c. Using neural networks to forecast the number of road accidents in Poland taking into account weather conditions. Results in engineering. In print.
- GORZELANCZYK P. 2023d. Forecasting the Number of RoadAccidents in Polaish Provinces Using Trend Models. Applied Sciences, 13(5): 2898. https://doi.org/10.3390/app13052898
- GORZELANCZYK P., BAZELA J. 2021. Analysis of pedestrian behavior at crosswalks and evaluation of functioning pedestrian crossings. Transport Problems, 16(4): 135-147.
- GORZELAŃCZYK P., BAZELA J., KALINA T., JURKOVIČ M. 2022a. Analysis of pedestrian behavior in the city of Pila. Communications - Scientific Letters of the University of Žilina, 24(2): F14-F26.
- GORZELAŃCZYK P., BORKOWSKA A., SZUBERT P., KALINA T., JURKOVIČ M. 2022b. Analysis and evaluation of the effectiveness of safety systems at railroad crossings in Poland. Communications - Scientific Letters of the University of Žilina, 24(3): F46-F61.
- GORZELANCZYK P., HUK A. 2022. Road traffic safety : a case study of the Pila poviat in Poland. Scientific Journal of Silesian University of Technology. Series Transport, 114: 31-42.
- GORZELANCZYK P., JURKOVIČ M., KALINA T., MOHANTY M. 2022c. Forecasting the road accident rate and the impact of the COVID-19 on its frequency in the polish provinces. Communications – Scientific letters of the University of Zilina, 24(4): A216-231. https://doi.org/10.26552/com.C.2022.4.A216-A231
- GORZELANCZYK P., JURKOVIČ M., SKIBIŃSKA J., KALINA T. 2022d. Road safety and the causes of road accidents in Poland. Transport Problems, 17(3): 17-30.
- GORZELANCZYK P., KALINA T., JURKOVIČ M. 2022e. Impact of the COVID-19 Pandemic on Car-Sharing in Poland. Communications - Scientific letters of the University of Zilina, 24(4): A172-186. doi: 10.26552/com.C.2022.4.A172-A186
- GORZELANCZYK P., PYSZEWSKA D., KALINA T., JURKOVIC M. 2020. Analysis of road traffic safety in the Pila poviat. Scientific Journal of Silesian University of Technology. Series Transport, 107: 33-52. ISSN: 0209-3324. https://doi.org/10.20858/sjsutst.2020.107.3
- GORZELANCZYK P., TYLICKI H. 2023. Forecasting the number of road accidents in Poland depending on the day of the week using neural networks. LOGI – Scientific Journal on Transport and Logistics, 14(1): 35-42. https://doi.org/10.2478/logi-2023-0004
- HELGASON A. 2016. Fractional integration methods and short Time series: Evidence from asimulation study. Political Analysis, 24(1): 59-68. http://www.jstor.org/stable/24573204
- JURKOVIC M., GORZELANCZYK P., KALINA T., JAROS J., MOHANTY M. 2022. Impact of the COVID-19 pandemic on road traffic accident forecasting in Poland and Slovakia. Open Engineering, 12: 578-589. https://doi.org/10.1515/eng-2022-0370
- KARLAFTIS M., VLAHOGIANNI E. 2009. Memory properties and fractional integration in trans-portation time-series. Transportation Research Part C Emerging Technologies, 17(4): 444-453. https://doi.org/10.1016/j.trc.2009.03.001
- KASHPRUK N. 2010. Comparative Research of Statistical Models and Soft Computing for Identification of Time Series and Forecasting. Opole University of Technology.
- Las losowy. 2022. Wikipedia. Wolna encyklopedia. Retrieved from https://pl.wikipedia.org/wiki/Las_losowy (access 17.04.2022).
- LAVRENZ S., VLAHOGIANNI E., GKRITZA K., KE Y. 2018. Time series modeling in traffic safetyresearch. Accident Analysis & Prevention, 117: 368-380. https://doi.org/10.1016/j.aap.2017.11.030
- ŁOBEJKO S. 2015. Time Series Analysis and Forecasting with SAS. Main Business School, Warsaw.
- MAMCZUR M. 2020. Jak działa regresja liniowa? I czy warto ją stosować? Mirosław Mamczur. Blog o data science, AI, uczeniu maszynowym i wizualizacji danych. Retrieved from https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/ (access 17.04.2022).
- MONEDERO B.D., GIL-ALANAA L.A., MARTÍNEZAA M.C.V. 2021. Road accidents in Spain: Are they persistent? IATSS Research, 45(3): 317-332. https://doi.org/10.1016/j.iatssr.2021.01.002
- PIŁATOWSKA M. 2012. The choice of the order of autoregression depending on the parameters of the generating model. Econometrics, 4: 16-35.
- Pojazdy samochodowe i motorowery zarejestrowane w Polsce, stan na 31 grudnia. 2023. Polski Związek Motorowy. Retrieved from https://www.pzpm.org.pl/content/download/2591/10569/file/park%20pojazdow%20PL%201990_2018.pdf (access 21.01.2023).
- PROCHAZKA J., CAMAJ M. 2017. Modelling the number of road accidents of uninsured drivers and their severity. In Proceedings of International Academic Conferences 5408040, International Institute of Social and Economic Sciences, Geneva, Switzerland, 27 June 2017.
- PROCHÁZKA J., FLIMMEL S., ČAMAJ M., BAŠTA M. 2017. Modelling the Number of Road Accidents. 20-th AMSE. Applications of Mathematics and Statistics in Economics. International Scientific Conference: Szklarska Poręba, 30 August 0 3 September 2017, p. 355-364. https://doi.org/10.15611/amse.2017.20.29
- Prognozowanie na podstawie szeregów czasowych. Retrieved from http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf (access 17.04.2022).
- Statystyka - Portal polskiej Policji. Retrieved from https://statystyka.policja.pl/ (access 17.04.2022).
- SUNNY C.M., NITHYA S., SINSHI K.S., VINODINI V.M.D., LAKSHMI A.K.G., ANJANA S., MANOJKUMAR T.K. 2018. Forecasting of Road Accident in Kerala: A Case Study. In Proceedings of the 2018 International Conference on Data Science and Engineering (ICDSE), Kochi, India, 7-9 August 2018. https://doi.org/10.1109/ICDSE.2018.8527825
- SZMUKSTA-ZAWADZKA M., ZAWADZKI J. 2009. Forecasting on the Basis of Holt-Winters Models for Complete and Incomplete Data. Research Papers of the Wrocław University of Economics, 38.
- The Global Status on Road Safety. 2018. World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789241565684 (access 17.04.2022).
- WÓJCIK A. 2014. Autoregressive Vector Models as a Response to the Critique of Multi-Equation Structural Econometric Models. Studia Ekonomiczne, 193: 112-128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b03bbcda-3e94-43a9-9dde-fbf94e094a23