
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY
 IM. JANA I JEDRZEJA SNIADECKICH W BYDGOSZCZY

ZESZYTY NAUKOWE NR 256
TELEKOMUNIKACJA I ELEKTRONIKA 13 (2010) 79-91

PETRI NETS AND ACTIVITY DIAGRAMS
IN LOGIC CONTROLLER SPECIFICATION – TRANSFORMATION

AND VERIFICATION

Iwona Grobelna, Micha Grobelny, Marian Adamski

Institute of Computer Eng. And Electronics
University of Zielona Góra

Zielona Góra, Poland
{i.grobelna, m.adamski}@iie.uz.zgora.pl, m.grobelny@weit.uz.zgora.pl

Summary: The paper presents formal verification method of logic controller specifica-
tion taking into account user-specified properties. Logic controller specification may
be expressed as Petri net or UML 2.0 Activity Diagram. Activity Diagrams seem to be
more user-friendly and easy-understanding that Petri nets. Specification in form of ac-
tivity diagram may afterwards be transformed into Petri net, which may then be for-
mally verified and used to automatically generate implementation (code). A new
transformation method dedicated for event-driven systems is proposed. Verification
process is executed automatically by the NuSMV model checker tool. Model descrip-
tion based on specification and properties list is being built. Model description derived
from Petri net is presented in RTL-level and easy to synthesize as reconfigurable logic
controller or PLC. Properties are defined using temporal logic. In model checking
process, verification tool checks whether requirements are satisfied in attached system
model. If this is not the case, appropriate counterexamples are generated.

Keywords: formal verification, logic controller, model checking, Petri nets, UML Ac-
tivity Diagrams

1. INTRODUCTION

Logic controller specification is the first step in the design and development pro-
cess. It is therefore especially important, that the specification meets user-defined re-
quirements. The specification may be formalized in different forms [12], e.g. by means
of Petri Nets or, what may seem more user-friendly, by means of UML 2.0 Activity
Diagrams. However, activity diagrams are not well supported by formal verification
mechanisms. Nevertheless, they can be transformed into Petri nets which can be then
formally verified for consistency between model description and requirements for its
behavior. In the article a new transformation method dedicated for event-driven systems
is proposed. Activity diagram action nodes are interpreted as Petri net transitions, unlike
classical approaches in previous versions of UML where action nodes were interpreted
as Petri net places.

Model checking of prepared specification allows to early detect subtle errors re-
sulting from wrong specification interpretation. It is one of formal verification methods

80 I. Grobelna, M. Grobelny, M. Adamski

among others like e.g. theorem proving [7] [16]. The paper focuses on a new logical
model which derives from Petri net and is presented in RTL-level in such a way that it
is easy to synthesize as reconfigurable logic controller or PLC

The article is structured as follows. Section 2 presents some background on formal
mechanisms needed to specify logic controller behavior, Petri nets and UML 2.0 Activi-
ty Diagrams, and a formal mathematical system used in requirements specification.
Section 3 concentrates on transformation aspects from activity diagram into Petri net
specification. Section 4 focuses on model checking of formal specification in form of
Petri net. The article concludes with short summary and future research directions.

2. FORMAL SPECIFICATION BY MEANS OF PETRI NET
AND UML 2.0 ACTIVITY DIAGRAM

This section includes some background on formal specification methods by means
of Petri nets and UML 2.0 Activity Diagrams, and on temporal logic.

2.1. PETRI NETS

Petri nets [3] [4] [8] [12] were introduced in 1962 by Carl Adam Petri as a general
purpose mathematical model for describing relations between conditions and events.
They are currently used in many industrial branches for planning and controlling of
production flow, design and programming of microprocessor controllers, system soft-
ware synthesis, etc. There are some design tools available which allow to automatically
generate code from Petri net specification [11].

Graphic representation of Petri net can be understood even by non-technical staff.
It allows e.g. to specify such behaviors as parallelism and concurrency, choice, syn-
chronization, memorizing, reading or resource sharing [8].

A Petri net is specified by places (represented by a circle) and transitions (repre-
sented by a bar or a box) connected together (represented by directed arcs which indi-
cate relation flow, where places can be connected only to transitions, and transitions can
be connected only to places). The number of places and transitions is finite and not zero.
States are defined by tokens (represented by small full circles, also called markers)
inside some places. A transition can be fired only if each of its input places contains at
least one token. Then from each of its input places one token is being removed and
added to each of its output places.

Control Interpreted Petri Nets [2] specify and model the behavior of concurrent
logic controllers and take into account properties of controlled objects. Local states may
change after firing of transitions if some events occur. Transition guards are associated
with input signals of controller and places are associated with its output signals. Global
state of logic controller is built of simultaneously holding local states.

2.2. UML 2.0 ACTIVITY DIAGRAMS

The Unified Modelling Language 2.0 notation [19] simplifies information flow be-
tween team members and enables easy understanding of system behavior by non-
experienced staff. It was initially introduced for specification, visualization and docu-
mentation of software. However, behavioral embedded system design [4] can also be

 Petri nets and activity diagrams in logic controller... 81

facilitated by using some types of UML diagrams, like activity diagrams, state machines
or sequence diagrams.

Activity diagrams are currently used in business domain, modeling of information
flow [10] [23] and behavioral software and embedded systems design in soft-
ware/hardware co-design [20].

Most commonly used parts of UML activity diagrams are action nodes (represented
with rounded rectangles with the name of the action inside). The flow of activities is de-
scribed using lines with arrowheads. Additionally every diagram should start with the
initial node (big filled dot) and end with the final point (filled dot with a border). Usually
embedded controllers or other discreet systems have parallelism in their description. It is
possible to represent it using fork and join nodes (notated by horizontal or vertical bars).

2.3. TEMPORAL LOGIC

Temporal logic [5] [15] [17] introduced into computing science in 1977 by Amir
Pnuelli derives from modal logic with possibility and necessity operators. Firstly it was
used in concurrent and reactive systems. Currently it is used also in program specifica-
tion, verification, synthesis and logical programming.

Classical temporal logic is Linear-time Temporal Logic (LTL). It describes rela-
tions in the system and state sequences. A formula can change any time its value, e.g. in
some states it can be true, and in others it can be false. Basic operators are: always (G),
sometimes (F) and next (X).

Temporal logic with time branches is Computation Tree Logic (CTL). Time is pre-
sented here as a tree branching out into the future with present moment as the root.
Characteristic for branching time logics are path quantifiers: the E operator for some
paths and the A operator for all paths. They are for paths beginning from a given state,
while state quantifiers are for states in a path. State quantifiers are: the F operator for
some states and the G operator for all states. Path and state quantifiers are mostly used
together, i.e. EF p means that in some paths in some states formula p is true and AG p
means that in all paths in all states formula p is true.

3. TRANSFORMATION

In this section a new transformation method dedicated for event-driven systems is
presented. Firstly, an example is introduced, which will be used to better illustrate pro-
posed transformation method.

As an example to present transformation method from UML 2.0 Activity Dia-
grams to Petri nets a simple embedded system for movement control of two vehicles [3]
has been taken.

Initially, both vehicles are placed at starting points a and c. After pressing the m
button, they begin to move to the right simultaneously. If both vehicles reach their end-
ing points (point b for the first vehicle W1 and point d for the first vehicle W2) vehicle
W1 returns to its starting point a. Afterwards, the second vehicle W2 returns to its start-
ing point c. Then the process can be started again. The real model of described process
is presented in Fig. 1.

82 I. Grobelna, M. Grobelny, M. Adamski

Fig. 1. Real model of analyzed process

The schema of logic controller with input and output signals is presented in Fig. 2.
The signals are described in Table 1 and Table 2.

Fig. 2. Logic controller schema

Table 1. Input signals and their meaning

Input signal Meaning

m Signal to start the process.
a The first vehicle W1 is at its starting point a.
b The first vehicle W1 is at its ending point b.
c The second vehicle W2 is at its starting point c.
d The second vehicle W2 is at its ending point d.

Table 2. Output signals and their meaning

Output signal Meaning

r1 The first vehicle W1 moves to the right.
r2 The second vehicle W2 moves to the right.
l1 The first vehicle W1 moves to the left.
l2 The second vehicle W2 moves to the left.

Specification of described process, presented in Fig. 3, was prepared by using
UML 2.0 Activity Diagrams. Movements to the right are realized simultaneously, while
movements to the left (returns) are realized sequentially. Actions are executed when
conditions from square bracket are fulfilled (input signals from Table 1 take appropriate
values). Values of output signals are specified inside action boxes. They are used for
controlling of vehicles movements in the real world (Table 2).

 Petri nets and activity diagrams in logic controller... 83

Fig. 3. Activity Diagram for analyzed process

For transformation purposes actions of activity diagrams are treated like transitions
[21] [22]. In classical approaches in previous versions of UML action nodes were inter-
preted as Petri net places. Here, action nodes are interpreted as Petri net transitions.
Fork and join nodes (notated by horizontal or vertical bars) are interpreted as fork or
join transitions in Petri net. Behavior of controlling process is presented step by step,
basing on the interpretation in form of activity diagram. The starting and ending points
of activity diagrams refer to appropriate places (P1 and P17) in Petri net. Additionally,
input conditions for the actions were treated like decision blocks before actions. There-
fore, each input condition in activity diagram is assigned a transition in Petri net with
appropriate firing condition. Additional synchronization places (P10 and P11) are nec-
essary, because UML syntax enforces synchronization in join node.

Petri net after direct transformation includes 17 places and 16 transitions (Fig. 4a).
However, some places and transitions are redundant. The model compression resulting
in reduction of unnecessary delays in circuit performance is executed. The proposed
reduction method assumes replacing of transition with condition and transition with
action with one transition. This procedure is connected with deleting of unnecessary
places. As an example, place P4 and transition T4 may be deleted and their etiquettes
may be moved to transition T2. Transition T4 reflects assigning of value 1 to signal r1.
According to the activity diagram (Fig. 3) the action may be executed only if signal m is
active. It can be therefore assigned to transition which checks the current value of the m
signal. After reduction of redundant places and transitions Petri net (Fig. 4b) has 10
places and 9 transitions (amount of places and transitions has been decreased by ca.
40%).

84 I. Grobelna, M. Grobelny, M. Adamski

Fig. 4. Petri net after direct transformation from activity diagram (a) and after reduction of re-
dundant places (b)

4. MODEL CHECKING

Model checking technique enables formal verification of logic controller specification.
Specification can be checked against behavioral requirements which have to be fulfilled.

 Petri nets and activity diagrams in logic controller... 85

First of all, description and requirements list have to be delivered to a model checker
tool. A system to be verified should be modeled using the description language of the
particular model checker, in our case it is a symbolic model checker NuSMV in the cur-
rent version 2.4.3 [6] [9]. Requirements list with defined properties should be coded using
the specification language of particular model checker. The list should include as many
desired properties as possible as only they will be checked. Finally model checker verifies
the system and gives an answer whether described model satisfies the specification. In
case of detected errors user receives feedback with appropriate counterexamples. What is
important is the fact that model checking can be used to verify the whole system or only
some part of it. Partial verification is especially valuable in large systems, where the de-
sign process is complex and long, as it can be performed step-by-step during the design
phase considering each time only a limited subset of requirements.

Design requirements specified by Petri net have to be transformed into the format
of the NuSMV model checker. Then the specification can be verified against require-
ments defined with linear-time temporal logic. Also other specification forms can be
formally verified by the model checker tool, an example of algorithmic state machine
verification can be found in [13].

The proposed model description derives from Petri net. It is presented in RTL-
level (Register Transfer Level) in such a way that it is easy to synthesize as reconfigura-
ble logic controller or PLC without any additional changes.

Model description can be prepared as shown in subsections 4.1, 4.2 and 4.3. Re-
quirements list can be defined as presented in subsection 4.4. Subsection 4.5 concen-
trates on model checking process itself, while subsection 4.6 focuses on the results of
performed formal verification.

4.1. VARIABLES DEFINITION

Variables definition (Appendix, lines 2-9) includes global states, input and output
signals. Another example of Petri net verification idea is presented in [14] where the
verification process is treated more example-specific and focuses rather on controlled
objects and its statuses than on global system states.

It is assumed that in one moment only one input signal can be active. Therefore,
there is only one variable defined which takes any of possible input signals as its value
(the amount of them equals the amount of rows in Table 1 with extra value for no active
input signals added).

The number of output signals equals the number of rows in Table 2, where each
signal is an independent variable and can be either active or inactive.

Global states are formed of local states from Petri net presented in Fig. 4b. The fir-
ing time of transitions is extremely short and only one transition may be fired at particu-
lar time unit, what corresponds to one of the important functioning rules of formal mod-
el from [1]. However, the nondeterministic automaton with global states of received
Control Interpreted Petri Net can be simplified in such a way, that after global state
P2P3, state P6P7 will be reached (transitions T2 and T3 have the same firing condition
so the firing time will be just one after the other and global states P2P7 or P3P6 would
last the minimum amount of time).

System state is defined by the combination of variable values. In the NuSMV sys-
tem model of described example, there exists 864 possible combinations, but only 24 of
them are available.

86 I. Grobelna, M. Grobelny, M. Adamski

4.2. INITIAL VALUES OF VARIABLES

Initially, all variables have some default values assigned (Appendix, lines 11-16).
The initial values are changing according to the rules defined next.

4.3. ASSIGNMENT OF VALUES TO VARIABLES

All assignments of next values (Appendix, lines 17-60) happen simultaneously. To
make the model simpler, in the sample model description no emergency situations have
been taken into account. For example, if a vehicle gets stuck during the movement, it
will be necessary to push the vehicles by hand to the starting points and start the process
again from the beginning.

To simulate the behavior of real system, values of input signals are chosen ran-
domly, but only expected input signals may be active at particular time.

4.4. REQUIREMENTS LIST

Requirements list may be defined by using either Linear-time Temporal Logic LTL
or Computation Tree Logic CTL. The second one is better for verification of nondeter-
ministic programs [18]. We have chosen the first one to define behavioral requirements of
the designed logic controller. Among the properties there are some safety properties (sit-
uations which must not happen) and liveness properties (situations which have to happen).

Required properties (Appendix, lines 61-82) examine behavior of the designed
logic controller mainly after occurrence of some input signals. Let us explain some
defined properties. The property in lines 67-68 states that always after the occurrence of
m input signal, in the next state output signals r1 and r2 will be assigned value 1, what
means that both vehicles will move to the right. Next property (lines 69-70) indicates
that it should never be the case that both output signals r1 and l1 is assigned at the same
time value 1, what means that the first vehicle can not move to the right and to the left
(and as the result stay in one place if the forces for moving to the right and moving to
the left are equal) at the same time.

4.5. MODEL CHECKING PROCESS

Model description and requirements list are input data for the NuSMV model
checker. The tool compares them and generates an answer whether required properties
are satisfied in delivered model description.

4.6. RESULTS

After successfully verification a short report is generated (parts of it are presented
in Fig. 5 and Fig. 6). It includes list of checked properties with status whether they are
satisfied in the model description or not. If any of the requirements is not satisfied, ap-
propriate counterexample is generated. The counterexample presents a trace which may
be used by the designer to follow the incorrect situation.

Sample requirements which are satisfied in the described example are listed below
(Fig. 5).

 Petri nets and activity diagrams in logic controller... 87

-- specification G (input = m -> X (r1 = 1 & r2 = 1)) is true
-- specification G !(l1 = 1 & r1 = 1) is true
-- specification G !(l2 = 1 & r2 = 1) is true
-- specification G (input = b -> X r1 = 0) is true
-- specification G (input = d -> X r2 = 0) is true

Fig. 5. Satisfied requirements

From the defined requirements a sample property which can not be satisfied (lines
73-74) indicates that always after occurrence of b input signal (the first vehicle reached
its ending point b) finally the output signal l1 will be assigned value 1 (the first vehicle
will finally return to its starting point a). This however can not be guaranteed as it may
be the case that the second vehicle never reaches its ending point d and so the whole
system will remain in global state P7P10 of the Petri net from Fig. 4b. The situation
trace is presented in a generated counterexample (Fig. 6).

-- specification G (input = b -> F l1 = 1) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 3.1 <-

state = p1
input = none
r1 = 0
r2 = 0
l1 = 0
l2 = 0

-> Input: 3.2 <-
-> State: 3.2 <-
 state = p2p3
-> Input: 3.3 <-
-> State: 3.3 <-
 input = m
-> Input: 3.4 <-
-> State: 3.4 <-

state = p6p7
r1 = 1
r2 = 1

-> Input: 3.5 <-
-> State: 3.5 <-
 Input = b
-> Input: 3.6 <-
-- Loop starts here
-> State: 3.6 <-

state = p7p10
input = none
r1 = 0

-> Input: 3.7 <-
-> State: 3.7 <-

Fig. 6. Generated counterexample

5. CONCLUSION

Formally specifying system behavior using UML 2.0 Activity Diagrams is an easy
and efficient way to document initial negotiation results between customer and supplier.

88 I. Grobelna, M. Grobelny, M. Adamski

The specification is then easy-understandable both for engineers and for non-technical
partners. On the other hand, Petri nets seem to be better suited for logic controllers and
are currently commonly used in the industry. Furthermore, possibility of implementa-
tion (code) generation from Petri net specification and insufficient verification methods
of UML Activity Diagrams also have to be taken into account. These aspects suggest
the solution of transformation from activity diagram to Petri net specification.

Model checking technique is very valuable for formal verification of designed sys-
tems. Although it can not prove that the system model is completely correct, it can
prove that it has or has not some user-specified desired properties. An advantage is also
the fact that model correctness can be verified before the real system physically exists.
Therefore it can potentially prevent errors on an early stage of system development.

However, human interaction is especially needed by counterexamples analysis.
Generation of them can be caused either by false model description or by invalid re-
quirements specification and every counterexample has to be carefully analyzed.

Future research directions focus on the improvement of transformation from UML
2.0 Activity Diagrams into Petri nets. The aim is to make the transformation fully auto-
matic so that the outgoing specification form is compact and its interpretation corre-
sponds to the interpretation by means of initial activity diagram. Other research direc-
tions concentrate on model checking technique and its application to Petri nets specifi-
cations. Different transformation methods from Petri net into description format of the
NuSMV model checker are being examined.

APPENDIX

Model description with requirements list for discussed example is attached.

1. MODULE main
2. VAR
3. state: {p1, p2p3, p6p7, p6p11, p7p10,
4. p10p11, p12, p13, p15};
5. input: {none, m, a, b, c, d};
6. r1 : {1, 0};
7. r2 : {1, 0};
8. l1 : {1, 0};
9. l2 : {1, 0};
10. ASSIGN
11. init(state) := p1;
12. init(input) := none;
13. init(r1) := 0;
14. init(r2) := 0;
15. init(l1) := 0;
16. init(l2) := 0;
17. next(state) := case
18. state = p1 : p2p3;
19. state = p2p3 & input = m : p6p7;
20. state = p6p7 & input = b : p7p10;
21. state = p6p7 & input = d : p6p11;
22. state = p7p10 & input = d : p10p11;
23. state = p6p11 & input = b : p10p11;
24. state = p10p11 : p12;
25. state = p12 : p13;
26. state = p13 & input = a : p15;
27. state = p15 & input = c : p1;

 Petri nets and activity diagrams in logic controller... 89

28. 1 : state;
29. esac;
30. next(input) := case
31. state = p2p3 : {none, m};
32. state = p6p7 : {none, b, d};
33. state = p6p11 : {none, b};
34. state = p7p10 : {none, d};
35. state = p13 : {none, a};
36. state = p15 : {none, c};
37. 1: none;
38. esac;
39. next(r1) := case
40. state = p2p3 & input = m : 1;
41. state = p6p7 & input = b : 0;
42. state = p6p11 & input = b : 0;
43. 1 : r1;
44. esac;
45. next(r2) := case
46. state = p2p3 & input = m : 1;
47. state = p6p7 & input = d : 0;
48. state = p7p10 & input = d : 0;
49. 1 : r2;
50. esac;
51. next(l1) := case
52. state = p13 & input!= a : 1;
53. state = p13 & input = a : 0;
54. 1 : l1;
55. esac;
56. next(l2) := case
57. state = p13 & input = a : 1;
58. state = p15 & input = c : 0;
59. 1 : l2;
60. esac;
61. LTLSPEC
62. F (state = p1);
63. LTLSPEC
64. F (state = p15);
65. LTLSPEC
66. G (input = b -> F(state = p7p10));
67. LTLSPEC
68. G (input = m -> X(r1 = 1 & r2 = 1));
69. LTLSPEC
70. G !(l1 = 1 & r1 = 1);
71. LTLSPEC
72. G !(l2 = 1 & r2 = 1);
73. LTLSPEC
74. G (input = b -> F(l1 = 1));
75. LTLSPEC
76. G (input = b -> X (r1 = 0));
77. LTLSPEC
78. G (input = d -> X (r2 = 0));
79. LTLSPEC
80. G (input = a -> X (l1 = 0));
81. LTLSPEC
82. G (input = c -> X (l2 = 0));

90 I. Grobelna, M. Grobelny, M. Adamski

BIBLIOGRAPHY

 [1] Andreu D., Souquet G., Gil T., 2008. Petri Net based rapid prototyping of digital com-
plex system, Symposium on VLSI, IEEE Computer Society Annual, pp. 405- 410.

 [2] Adamski M., 2001. A rigorous design methodology for reprogrammable logic
controllers, The International Workshop on Discrete-Event System Design,
DESDes'01, Przytok, Poland.

 [3] Adamski M., Choda M., 2000. Modelowanie uk adów sterowania dyskretnego
z wykorzystaniem sieci SFC, Wydawnictwo Politechniki Zielonogórskiej, Zielona
Góra (in Polish).

 [4] Adamski M., Karatkevich A., W grzyn M. (ed.), 2005. Design of embedded con-
trol systems, Springer (USA).

 [5] Ben-Ari M., 2005. Logika matematyczna w informatyce. Klasyka informatyki,
Wydawnictwa Naukowo-Techniczne, Warszawa (in Polish).

 [6] Cavada R. et al. NuSMV 2.4 User Manual, downloaded from http://nusmv.fbk.eu/
 [7] Clarke E.M., Wind J.M. et al, 1996. Formal methods: State of the Art and Future

Directions, ACM Computing Surveys, Vol. 28, No. 4.
 [8] David R., Alla H., 1992. Petri Nets & Grafcet. Tools for modelling discrete event

systems, Prentice Hall.
 [9] Eshuis R., 2006. Symbolic Model Checking of UML Activity Diagrams, ACM

Transactions on Software Engineering and Methodology, Vol. 15, No. 1, pp. 1-38.
[10] Eshuis R., Wieringa R., 2001. A Comparison of Petri Net and Activity Diagram

Variants, Proc. of 2nd Int. Coll. on Petri Net Technologies for Modelling Commu-
nication Based Systems, pp. 93-104.

[11] Frey G., Litz L., 1998. Verification and Validation of Control Algorithms by Cou-
pling of Interpreted Petri Nets, Proceedings of the IEEE SMC'98, Vol. 1, pp. 7-12.

[12] Gomes L., Barros J.P., Costa A., 2006. Modeling Formalisms for Embedded Sys-
tem Design, Embedded Systems Handbook, Taylor & Francis Group, LLC.

[13] Grobelna I., 2008. Formalna analiza interpretowanych algorytmicznych maszyn
stanów ASM z wykorzystaniem narz dzia model checker, Metody Informatyki
Stosowanej nr 3, Tom 16, pp. 107-124 (in Polish).

[14] Grobelna I., 2008. Formal verification of logic controller specification using
NuSMV model checker, X Mi dzynarodowe Warsztaty Doktoranckie OWD’2008,
Archiwum konferencji PTETIS, Vol. 25, pp. 459-464.

[15] Huth M., Ryan M., 2004. Logic in Computer Science. Modelling and Reasoning
about Systems, Cambridge University Press.

[16] Kern C., Greenstreet M.R., 1999. Formal Verification in Hardware Design: A
Survey, ACM Transactions on Design Automation of Electronic Systems
(TODAES), Vol. 4, Issue 2, pp. 123-193.

[17] Klimek R., 1999. Wprowadzenie do logiki temporalnej, AGH Uczelniane Wy-
dawnictwa Naukowo-Dydaktyczne, Kraków (in Polish).

[18] Lamport L., 1980. “Sometime” is sometimes “not never”, On the Temporal Logic
of Programs, Proceedings of the Seventh ACM Symposium on Principles of Pro-
gramming Languages, ACM SIGACT-SIGPLAN, pp. 174-185.

[19] http://www.omg.org
[20] Schattkowsky T. UML 2.0 – Overview and Perspectives in SoC Design, Proceed-

ings of the Design, Automation and Test in Europe Conference and Exhibition
(DATE’05).

 Petri nets and activity diagrams in logic controller... 91

[21] Staines T.S., 2008. Intuitive Mapping of UML 2 Activity Diagrams into Funda-
mental Modeling Concept Petri Net Diagrams and Colored Petri Nets, 15th Annual
IEEE International Conference and Workshop on the Engineering of Computer
Based Systems, pp. 191-200.

[22] Tri kovi I., 2000. Formalizing activity diagram of UML by Petri nets, Novi Sad
J. Math, Vol. 30, No. 3, pp. 161-171.

[23] Yen-Liang C., Sammy C., Chyun-Chyi C., Irene C., 2000. Workflow Process
Definition and Their Applications in e-Commerce, IEEE 2000, pp. 193-200.

SIECI PETRIEGO I DIAGRAMY AKTYWNO CI
W SPECYFIKACJI STEROWNIKÓW LOGICZNYCH –

TRANSFORMACJA I WERYFIKACJA

Streszczenie

Praca prezentuje metod formalnej weryfikacji specyfikacji sterownika logicznego
uwzgl dniaj c w a ciwo ci podane przez u ytkownika. Specyfikacja sterownika lo-
gicznego mo e by przedstawiona m.in. w postaci sieci Petriego lub diagramu aktyw-
no ci j zyka UML. Diagramy aktywno ci wydaj si by bardziej przyjazne i zrozu-
mia e dla u ytkownika ni sieci Petriego. Specyfikacja w postaci diagramu aktywno-
ci mo e zosta przekszta cona do sieci Petriego, która nast pnie mo e by formalnie

zweryfikowana i wykorzystana do automatycznej generacji implementacji (kodu).
W z y diagramu aktywno ci konsekwentnie interpretowane s jako tranzycje sieci
Petriego, w odró nieniu od klasycznego podej cia (w starszych wersjach UML) gdzie
odwzorowywa o si je jako miejsca sieci Petriego. Proces weryfikacji wykonywany
jest automatycznie przez narz dzia weryfikacji modelowej. Tworzony jest opis mode-
lu bazuj cy na specyfikacji oraz lista wymaga . Nowatorskim podej ciem jest przed-
stawienie sieci Petriego na poziomie RTL w taki sposób, e atwo jest przeprowadzi
syntez logiczn sieci w postaci wspó bie nego rekonfigurowalnego sterownika lo-
gicznego lub sterownika PLC bez konieczno ci przekszta cania modelu. Wymagania
okre lone s przy u yciu logiki temporalnej. W procesie weryfikacji modelowej na-
rz dzie weryfikuj ce NuSMV sprawdza, czy model systemu spe nia stawiane mu
wymagania. Je eli tak nie jest, generowany jest odpowiedni kontrprzyk ad.

S owa kluczowe: formalna weryfikacja, sterownik logiczny, weryfikacja modelowa,
sieci Petriego, diagramy aktywno ci UML

