Identyfikatory
Warianty tytułu
Expert system for evaluation of water distribution system created with an inductive inference
Języki publikacji
Abstrakty
At present often in computer programs the methods of computational intelligence are used, in this expert systems. In building of expert systems the process of knowledge acquisition is one of the principle problem. The improvement of knowledge acquisition is received by use of the machine learning methods. The most popular strategy of knowledge acquisition in the machine learning methods is the inductive inference, in this induction of decision trees. Inductive inference is the process of reaching a general conclusion from specific examples. This paper presents results of the induction of the decision tree intended to evaluation of water distribution system. Rules kept in the decision tree make possible to estimate the new project variants of the water supply network. Applying the induction of decision trees entails the preparation of a set of examples learners. Collection of examples should be representative and sufficiently describe the specific features of the problem. Using information on the eight water supply systems and the parameters of their work, the computations were performed water distribution system. The calculation results were the basis for the calculation defined in this study the variables that characterize the solution of the water distribution system. Five classes are defined to describe the water supply problems due to improper water distribution system and one associated with the correct solution. Each class will be selected on the basis of defined variables. Therefore, the decision tree should lead to the assignment of variables describing the system of water distribution to the appropriate class, characterized by the solution of the system. Using inductive inference obtained decision rules that can be used in expert system that can work with the program for the simulation of hydraulic water distribution systems.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
650--659
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Politechnika Białostocka, Białystok, Poland
Bibliografia
- 1. Bolc, L., Zaremba, J.: Wprowadzenie do uczenia się maszyn. Akademicka Oficyna Wydawnicza RM, Warszawa 1992.
- 2. Bubnicki Z., Grzech A.: Inżynieria wiedzy i systemy ekspertowe. Oficyna Wydawnicza Politechniki Wrocławskiej. Wrocław 2000.
- 3. Chromiec J., Strzemieczna E.: Sztuczna inteligencja. Metody konstrukcji i analizy systemów eksperckich. Akademicka Oficyna Wydawnicza PLJ. Warszawa 1994.
- 4. Cichosz P.: Systemy uczące się. WNT. Warszawa 2000.
- 5. Epp R., Fowler A. G.: Efficient Code for steady state Flows in Networks.Journal of the Hydraulics Division, Proceedings of the American Society ofCivil Engineers, Vol. 96, No. HY1, 43–56 (1970).
- 6. Knapik K.: Dynamiczne modele w badaniach sieci wodociągowych.Wydawnictwo Politechniki Krakowskiej. Kraków 2000.
- 7. Koelle, E.: Advanced Water Distribution Modeling And Management. Haestad Methods Solution Center, Haestead Press, 2003.
- 8. Konar A.: Computational Intelligence: Principles, Techniques and Applications.Springer-Verlag 2005.
- 9. Kubat M., Bratko I., Michalski R.S.: Review of machine learning methods,learning and data mining. John Wiley & Sons, 3–70 (1998).
- 10. Mulawka J.J.: Systemy ekspertowe. WNT, Warszawa 1996.
- 11. Michalik K.: PC-Shell 4.1 dla Windows 9x/NT/2000. Szkieletowysystem ekspertowy. Część 1. Podręcznik użytkownika. AITECH, Katowice 2004.
- 12. Michalik K.: PC-Shell 4.1 dla Windows 9x/NT/2000. Szkieletowy system ekspertowy. Część 2.Podręcznik inżyniera wiedzy. AITECH, Katowice 2004.
- 13. Michalik K.: DeTreex 4.0 dla Windows 9x/NT/2000. Indukcyjny system pozyskiwania wiedzy. Podręcznik użytkownika. AITECH, Katowice 2003.
- 14. Niederliński A.: Regułowe systemy ekspertowe. Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego. Gliwice 2000.
- 15. Ormsbee L.E.: The History of Water Distribution Network Analysis: The Computer Age. Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium, ASCE, 1–6 (2006).
- 16. Quinlan J.R.: Induction of decision trees. Machine Learning. Vol. 1, 81–106 (1986).
- 17. Quinlan J.R.: C 4.5 Program for Machine Learning. Morgan Kaufmann, San Mateo, 1993.
- 18. Quinlan J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research, Vol. 4, 77–90 (1996).
- 19. Rossman, L.A.: EPANET 2 User’s manual, EPA/600/R-00/057. National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 2000.
- 20. Rutkowski L.: Metody i techniki sztucznej inteligencji. Inteligencja obliczeniowa. Wydawnictwo Naukowe PAN. Warszawa, 2009.
- 21. Shamsi U.M.: GIS applications for water, wastewater, and stormwater systems. Taylor & Francis, 2005.
- 22. Taher S.A., Labadie, J.W.: Optimal design of water-distribution networks with GIS. Journal of Water Resources Planning and Management, ASCE, Vol. 122, No.4, 301–311 (1996).
- 23. Walski, M.T., Chase, D.V., Savic, D.A., Grayman, W.M., Beckwith S., Koelle E.: Advanced Water Distribution Modeling and Management. Haestead Press, Waterbury, CT, 204–207 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0302a53-b298-48a6-b52e-7f1efc77b5e6