PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the parameters of the discrete model of a steel–concrete composite beam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents estimations of mathematical models' parameters regarding steel–concrete composite beams' natural vibrations. The model was created using Rigid Finite Element (RFE) Method. Parameters' estimation was done based on the results of experimental research, conducted on actual composite beams. Estimated parameters include: shearing and axial stiffness of connecting elements, and substitute longitudinal modulus of elasticity of the reinforced concrete slab, which takes into account longitudinal reinforcement. Employing the appropriate criteria during the process of estimation of the parameters of the steel–concrete composite beam models has a great impact on getting precise results. The estimation criteria were selected in order to achieve consistency of the natural vibration frequencies, along with vibration modes, measured during experimental and calculated based on the mathematical model. The models and all the calculations were made using the MATLAB programming environment.
Rocznik
Strony
209--219
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Department of Civil Engineering and Architecture, West Pomeranian University of Technology, Al. Piastów 50, 70-311 Szczecin, Poland
  • Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Al. Piastów 19, 70-310 Szczecin, Poland
  • Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • [1] S. Berczyński, T. Wróblewski, Vibration of steel–concrete composite beams using the Timoshenko beam model, Journal of Vibration and Control 11 (2005) 829–848.
  • [2] S. Berczyński, T. Wróblewski, Experimental verification of natural vibration models of steel–concrete composite beams, Journal of Vibration and Control 16 (2010) 2057–2081.
  • [3] G. Biscontin, A. Morassi, P. Wendel, Vibrations of steel–concrete composite beams, Journal of Vibration and Control 6 (2000) 691–714.
  • [4] M. Dilena, A. Morassi, Experimental modal analysis of steel concrete composite beams with partially damaged connection, Journal of Vibration and Control 10 (2004) 897–913.
  • [5] M. Dilena, A. Morassi, Vibrations of steel–concrete composite beams with partially degraded connection and applications to damage detection, Journal of Sound and Vibration 320 (2009) 101–124.
  • [6] E.J. Sapountzakis, Dynamic analysis of composite steel–concrete structures with deformable connection, Computers and Structures 82 (2004) 717–729.
  • [7] E.J. Sapountzakis, V.G. Mokos, An improved model for the dynamic analysis of plates stiffened by parallel beams, Engineering Structures 30 (2008) 1720–1733.
  • [8] E.J. Sapountzakis, I.C. Dikaros, Large deflection analysis of plates stiffened by parallel beams, Engineering Structures 35 (2012) 254–271.
  • [9] J. Maeck, M. Abdel Wahab, B. Peeters, G. De Roeck, J. De Visscher, W.P. De Wilde, J.-M. Ndambi, J. Vantomme, Damage identification in reinforced concrete structures by dynamic stiffness determination, Engineering Structures 22 (2000) 1339–1349.
  • [10] A. Teughels, J. Maeck, G. De Roeck, Damage assessment by FE model updating using damage functions, Computers and Structures 80 (2002) 1869–1879.
  • [11] S. Maas, A. Zurbes, D. Waldmann, M. Waltering, V. Bungard, G. De Roeck, Damage assessment of concrete structures through dynamic testing methods. 1. Laboratory tests, Engineering Structures 34 (2012) 351–362.
  • [12] A. Mordini, K. Savov, H. Wenzel, The finite element model updating: a powerful tool for structural health monitoring, Structural Engineering International 4 (2007) 352–358.
  • [13] A. Mordini, H. Wenzel, Damage detection on beam structures by means of VCUPDATE, Electronic Journal of Structural Engineering 10 (2010) 11–21.
  • [14] R.J. Allemang, The Modal Assurance Criterion (MAC): twenty years of use and abuse, Sound and Vibration 37 (2003) 14–21.
  • [15] E. Wittbrodt, I. Adamiec-Wójcik, S. Wojciech, Dynamics of Flexible Multibody Systems. Rigid Finite Element Method, Springer–Verlag, Berlin, Heidelberg, New York, 2006.
  • [16] J. Kruszewski, et al., Metoda sztywnych elementów skończonych (in Polish), Arkady, Warszawa, 1975.
  • [17] J. Kruszewski, et al., Metoda sztywnych elementów skończonych w dynamice konstrukcji (in Polish), WNT, Warszawa, 1999.
  • [18] M. Rucka, K. Wilde, Dynamika budowli z przykładami w środowisku MATLAB (in Polish), WPG, Gdańsk, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b02e027f-7544-4b85-9dd0-ba5976c8dc7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.